
Module 6:

Fundamentals of Digital Image
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Outline of Lecture

 Digital vs. Analog Signals

 Digital Image Representation

 Fourier Transforms

 REFERENCES:

 R.C. Gonzalez & R.E. Woods (1992). Digital Image 

Processing. Addison-Wesley. (parts on Analog signals)

 Z.N. Li and M.S. Drew (2003). Fundamentals of 

Multimedia. Prentice Hall (Chapter 3)
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Analog Representation

 An analog quantity can vary continuously over space 

and/or time.

 It is represented as f(x,y,z,t)

 Analog physical quantities can be transformed into 

electrical signals using sensors

 Signals can be represented as waves which can 

take up any possible real values within the 

instrument range (amplitude continuous)

 Value of the analog signal can be determined for any 

possible value of space or time variable (hence it is 

space or time continuous) 
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Waves -1

 Waves can be conceived as energy propagating from 

one place to another

 A wave essentially represents a graph or plot of the motion of 

a set of particles in the path of a wave over space or time
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Waves -2
Sinusoidal Waves

 The concepts of a wave can be explained by 

considering a sinusoidal function:

 y = A sin(t)  or  y = B cos(t)

 sinusoids are easier to deal with as they are periodic functions 

and can be represented by simple equations

 J.B. Fourier demonstrated that any irregular shaped 

wave can be constructed from a combination of a 

number of sine & cosine waves 

 Sinusoidal waves therefore can be considered as a kind of 

elementary wave that can be used as the building blocks to 

generate other waves
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Waves -3
Composite Waves

 Two or more sinusoidal waves can combined to 

generate a composite wave which may have a non-

sinusoidal shape 

 The composite shape is obtained by adding up the 

amplitudes of the component waves at all points
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Waves -4
Amplitude and Frequency

 The peak amplitude of a wave is the max. 

displacement of oscillating particle from its mean 

position 

 It represents the intensity of the wave; e.g. the brightness of 

light, the loudness of sound, etc. 

 The frequency refers to how fast 

the particle is oscillating:

 Define as the # of oscillations per unit 

time

 It physically represents the pitch of 

sound or color of light

 A higher pitch results in a shrill sound 

e.g. a whistle, while a lower pitch 

results in a dull and flat sound e.g. 

sound of a padded hammer
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A to D Conversion -1
Sampled, Quantized, Digital

 In contrast to analog quantities, 

 Sampled quantities have continuous value at discrete space

or time, i.e., at certain points in space or instances in time

 Quantized quantities have discrete values at continuous

space or time 

 Digital quantities have discrete values at discrete space or 

time

Sampled Signal: 

discrete time, 

continuous values

Quantized Signal: 

continuous time, 

discrete values

Digital Signal: 

discrete time, 

discrete values
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A to D Conversion -2
Sampling

 The first step in A-D conversion is SAMPLING

 It records values of wave at pre-determined discrete set of 

points and discards other values 

 For time-dependent quantities like sound, sampling is done 

at specific intervals of time (e.g. 10 times per second) --

time-discretization of the signal

 For time-independent quantities like a static image, 

sampling is done at regular space intervals (e.g. 10 times 

per inch) -- space-discretization of the signal
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A to D Conversion -3
Sampling Rate

 Sampling rate or sampling frequency: number of 

samples taken per second or per inch

 Balance of accuracy (higher sampling rate) and cost

 The digitized version will always be a degraded version 
of the original analog wave

 Lose some data in between two sample points

 Process irreversible
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A to D Conversion -4
Quantization

 Quantization levels: number of different sample 
values used to represent a digital quantity 
 We use n-bit to represent magnitude, with values range from 

0 to 2n–1: 0,1,2, …, 2n–1
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Quantization Error

 Errors in digital output 

 Because of quantization error there is always a distortion of 

the wave when represented digitally. This distortion effect is 

referred to as noise

Quantization Error
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A to D Conversion -5
Sampling Theory

 Nyquist’s theorem states: The sampling frequency 

must be greater than twice the frequency of input 

signal in order to be able to reconstruct the original 

signal accurately from the sampled version. 
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A to D Conversion -5
Sampling Theory

 在进行模拟/数字信号的转换过程中，当采样频率大于
信号中最高频率的2倍时，即：fs.max>=2Fmax,则采样
之后的数字信号完整地保留了原始信号中的信息，就是
可以不失真的恢复出原始的模拟信号。

 一般实际应用中保证采样频率为信号最高频率的5～10

倍；采样定理又称奈奎斯特抽样定理。

14



A to D Conversion -6
Sampling Theory

 Nyquist’s theorem states: The sampling frequency 

must be greater than twice the frequency of input 

signal in order to be able to reconstruct the original 

signal accurately from the sampled version. 

 Higher frequencies lead naturally to good approximation

 At Nyquist frequency, the output wave is quite blocky in 

appearance but all the cycles are correctly reproduced

 At < Nyquist frequency, the output fails to reproduce all the 

cycles of the original wave

under-sampling or aliasing
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Outline of Lecture

 Digital vs. Analog Signals

 Digital Image Representation

 Fourier Transforms
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Digital Image Representation

 A digital image f(x,y) can be considered as a 2D 

matrix whose row and column indices identify a point 

in the image and the corresponding matrix element 

value denotes the gray level at that point
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Example of Digital Image
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Digital Image Resolution

 The intensity of a monochrome image f at coordinate 

(x,y) is f(x,y)=l, the gray level of image at that point:

 l is the gray level of image at (x,y), with l = [Lmin, Lmax]

 Common practice is to shift the interval to [0, L-1]

 Hence 0 = black , L = white

 L determines the intensity resolution of images, e.g. L=256 = 28

 Resolution depends on sampling and gray levels

 # of gray levels:

L = 2p

 # of bits required to store 

a digitized image

b = M x N x p
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Effects of Spatial Resolution:
Checkerboard Effect

 If the resolution is decreased too much, the 
checkerboard effect can occur
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Effects of Intensity Resolution:
False Contouring

 If the gray scale is not enough, false contouring can 
occur on the smooth area which has fine gray scales

(a) Gray level = 16 (p=4)

(b) Gray level = 8

(c) Gray level = 4

(d) Gray level = 2
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Non-Uniform Sampling

 For a fixed value of spatial resolution, the 

appearance of the image can be improved by using 

adaptive sampling rates

 fine sampling required in the neighborhood of sharp gray-

level transitions

 coarse sampling is necessary in relatively smooth regions

 A simple way is to divide image into blocks and perform 

different sampling on each block
22



Gray-Scale Digital Image -1

 Digital image: represented by a matrix of pixel values

o Square sampling grid is used, with pixels equi-spaced along 

the two sides of the grid

shows an 

8x8 2-D 

array of 

binary 

values

 Binary image: Pixel values are binary – (0,1) or (black, white)

 In general, we want to represent something more complex

o Each pixel contains a range of intensity values

o Typical gray scale image contains 256 (=28) intensity values
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Gray-Scale Digital Image -2

 Pixel values are represented as quantized values 

o Quantization – a way of mapping a continuous range of values (0~1) 

to discrete integer intervals

o For p=3, there are 8 ranges of:

0: 0~1./8., 1: 1./8. 1~2./8., .. 7: 7./8.~1.

o What is the mapping function?

VQ = Integer (vo * n),  where vo=original value, n=8

o ISSUE: Is quantization reversible?

 Intensity at each pixel is then represented by an integer

o For p bit-planes, the value 

ranges from [0 - 2P-1] 

o Binary Image: p=1

o If p=8, we have gray levels 

from 0 (black) to 255 (white)
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 If three 8-bit integers are used (24-bits per 

pixel) , then it is a color image with 8-bits per 

color channel of R, G or B  16.7 million 

possible colors

 What about Color Images?

o Colors are modeled by {R, G, B} triplets

o Divide the bit-planes into 3 groups, p/3 bits for R, p/3 bits for G, ..

Color Digital Image

o Usually an extra alpha byte (for special effect info) is stored for each 

pixel  32-bit image
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Outline of Lecture

 Digital vs. Analog Signals

 Digital Image Representation

 Fourier Transforms
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Signal Processing

 It involves the transformation of a signal into a form 

which in some sense more desirable for analysis 

(e.g. analog to digital, or spatial to frequency)

 Analog Signal Processing Tool
 oscilloscope: Tektronics and HP instruments

 analog computer

 Digital Signal Processing (DSP) Tool
 mathematical analysis and formula

 computer software package, e.g. MATHLAB

 DSP Applications
 DSP chips, ASIC’s, embedded systems, etc.

27



Fourier Transforms- Overview
 The Fourier transform produces representation of 

any (2D) signal as a weighted sum of sines and 

cosines. Because of Euler's formula:

ejq = cos(q) + j sin(q),  where  j2=-1.

 Given: an image f;  its Fourier transform F:

 The forward transform is: F = T{f}

from spatial domain to (continuous) frequency domain.

 The inverse transform is: f = T-1{F}

from frequency domain back to spatial domain. 

 The Fourier transform is an unique and invertible operation:

f = T-1{T{f} }      and    F = T{T-1{F} }
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Fourier Transforms- cont.

 f is in spatial domain

its Fourier transform, F, is in frequency domain

 The invertible property enables signals to be transformed 

between both domains without loss of information

 WHY we want to transform signals to frequency domain?

 Because many operations are easier to perform in frequency 

domain than in spatial domain. For example:

 Image filtering: 
 low-pass filter (to remove details): simply remove high frequency 

component while retain low frequency component

 High-pass filter (to sharpen details): enhance high frequency 

components

 Compression: remove high-frequency component to save storage

 Image enhancement: scale image contents
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 Example: a periodic square wave

and the periodic function that it produces:

Fourier Analysis

 Trigonometric series of periodic signals
 Basically, any periodic function (piecewise continuous with 

left/right derivatives existing at discontinuities) can be 
expressed as an infinite sum of Sines and Cosines









 ...5sin

5

1
3sin

3

1
sin

4
xxx

k



 Towards a square wave
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 f(x), F(u) is called Fourier Transform pair

 They will exist if  f(x) is continuous and integrable, and 

F(u) is integrable

 As                                           

F(u) is computed as integral sum of sine & cosine terms

Fourier Analysis – 1D Case

 Let f(x) be a continuous function of a real variable 

x. Its Fourier Transform F(u) is:

  dxexfuF uxj 2)( 


where u is the frequency variable

 The inverse transform from of F(u) to f(x) is:

  dueuFxf uxj 2)( 


)2sin()2cos(2 uxjuxe uxj  
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 Fast Fourier Transform (FFT)

 As discussed in many textbooks and tool packages

 has N*logN operations (efficient implementations)

Discrete Fourier Analysis- 1D

 Suppose f(x) is discretized into a series

f(x) = { f(x0) + k dx },  k = 0, 1, .. N-1

1..,,2,1,0,)(
1

)(
1

0

/2 




 Nuexf
N

uF
N

x

Nuxj 

 The forward Fourier Transform is:
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 The corresponding inverse Transform is:

32



Fourier Analysis – 2D Case

 Fourier transform extends easily to 2D case with 

f(x,y) of 2 variables. Its Fourier Transform F(u,v) is 

given by:

  





 dydxeyxfvuF vyuxj )(2),(),( 

where u, v are the frequency variables

 The inverse transform from of F(u,v) to f(x,y) is:

  





 dvduevuFyxf vyuxj )(2),(),( 
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 If images are sampled in a square array, then M=N, and

Discrete Fourier Analysis- 2D
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 The forward Fourier Transform is:

 The corresponding inverse Transform is:
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Properties of Fourier Transform -1

 Invertibility

This means that F(u,v) can be computed by successive 

applications of 1D Fourier Transform of its inverse:

f(x,y)  F(x,v)  F(u,v)

 Separability
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Properties of Fourier Transform -2

 Rotation:

If we introduce:

x = r cos, y = r sin ,   then f(x,y)  f(r,)

u = w cosФ, v = w sinФ,   then F(u,v)  F(w,Ф)

Substitute into Fourier equation yields:

f(r, +0)  F(w, Ф +0) 

In other words, rotating f(x,y) by an angle 0 is equivalent 

to rotating F(u,v) by the same angle

 Scalability

For two scalars a and b:

a f(x,y)  a F(u,v)

and  f(ax, by)  F(u/a, v/b)/|ab| 36



Properties of Fourier Transform -3

 Convolution

 It is an important operations in image processing application

 Convolution of two functions f(x) and g(x) is:

where α is a dummy variable for integration.

  
  dxgfxgxf )()()(*)(

 Convolution theory

 If f(x) has Fourier Transform F(u), and

g(x) has Fourier Transform G(u), then

f(x) * g(x)  F(u) G(u)

i.e. convolution in x domain can be obtained by taking the inverse 

Fourier Transform of the product F(u) G(u)

 An analogous result is:

f(x) g(x)  F(u) * G(u)

 Many applications: image enhancement, etc.
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Block Transforms

 Instead of operating on whole image/audio, divide it 

into blocks, and process each block separately. 

 Computational complexity decreases.

 Transform captures the local behavior better.

 DCT (Discrete Cosine Transform) has been very 

popular in block transform based image compression 

for a long time.

 It approximates  Karhunen-Loeve (KLT), the optimum 

transform in mean square error (MSE) sense

 DCT is adopted for JPEG/MPEG standards

 More about DCT transform in later part of lectures
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Multimedia Signals & Systems

Network

Interface

Media

Processor
Media

Processor

Input Devices:
Microphone, Camera,

Keyboard, Writing

Pad, Scanner, etc.

Network:
Internet, 

Radio,

Telephone,

Wireless

Output Devices:
Loudspeaker,

Visual Display,

Printer, etc.

Multimedia

Data Store

Multimedia

Data Store

Multimedia Information: Text, Speech, Audio, Image, Video,

Cinema (From analog to digital representations and back)

Input Devices:
Microphone, Camera,

Keyboard, Writing

Pad, Scanner, etc.

Output Devices:
Loudspeaker,

Visual Display,

Printer, etc.

Network

Interface

A

A

A

A

A-DA-D
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Summary

 Cover fundamentals of media processing (from 

analog to digital domain)

 Discuss digital signals and systems 

 Fourier transform, Bock Transforms, ….

 Pave way for following classes

 Image, video and audio processing 

 many other applications later
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Next Lesson

 Next Lesson

Image Transforms and Filters

 Cover Audio part in Lesson  8
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MID-TERM TEST

1.图像检索的流程及其关键技术

2. KD-Tree，Hashing基本思想
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