Cross-media Intelligent
Searching



Scenario: a simple example of cross-media :

“Giant Panda” Image

: /[ Starting Query ]

]

Starting
Starting Query
Query
“Giant Panda” Text “Giant Panda” Audio

User can start a query from any type of media, and relevant multimedia data would
be returned.



Cross-media retrieval is a useful way to access multimodal data:

available available texts

available available

audio

& Cross-media retrieval can be regarded as the simulation of
the real world, and it helps us get multimodal data in a more
flexible and more informative way!



What cross-media retrieval needs to do?

[ It can be an image, audio or
keywords...

x Submit a query exampl

A 4

user query interface

1l

query results: <::lu cross-media search engine

texts, images, audios... | |

knowledge base

raw data

r <:> multimodal representation
texts image audio |video | & index
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1) Image Retrieval:



1 towards cross-media Retrieval

® Motivation

intelligent

integration

| >

Cross-media
retrieval

We can provide a more flexible and efficient way to access multimodal data.

We name it as cross-media retrieval.




Support multimodal sources
smooth integration of multimodal data;

guery media objects by examples of different modalities;

Challenging issues:

texts, images, audios, etc. are represented with different
features

different features are heterogeneous
cross-media similarity can’t be measured by content features

there is a semantic gap between low-level features and
semantics



Solution to Cross-media retrieval

= build cross-indexing from multimodal
data

a organize multimedia document

s explore cross-media correlations



Cross-indexing-based retrieval: General idea
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(1) Cross-index retrieval: interface
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The system now support images, audios and videos.
Users can submit any of the media objects, and the system returns relevant images, audios

and videos.



Build multimedia document: framework
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Building multimedia document: retrieval interface
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Exploring cross-media correlations: challenges

high-level semantics: war, dog, bird, car, tiger

Gap 2: Semantic gap

®
Gap 1: Content gap @ @

9

®

visual feature space auditory feature space

Challenges: 1. multimodal data reside in heterogeneous feature spaces
2. the semantic gap



Exploring Cross-media Correlations: Solutions

Images and audios represent high-level semantics from different perspectives. If we can
find the correlation between different perspectives, we can enable cross-media retrieval
with the bridge of correlations.

correlation

=== - ==

L9

explosion



Exploring cross-media correlations: mathematical realization

Basic idea:
Input: 1mage feature matrix: Audio feature matrix:
Canonical correlation analysis
| >
X and Y are of different dimension !
Output:

At the same time, the
correlation between X and Y
maximally coincides with the
correlation between X’ and Y’

. . '
X and Y are of the same dimension ! ICUDLO6, YT Zhuang



Exploring cross-media correlations: subsequent challenges

1. how to measure both intra- and inter-media correlations ?

cross-media
____________ -
P -~ e - - -7 @ h S N
Intra-media ¢ _ == _ R ! Intra-media
So - e
A D B | e e e e e e e e e — - - x
cross-media

2. how to introduce new media objects into the system?

ICUDLO6, YT Zhuang



Motivation and Background:

Three Properties of Cross-media

s p
Cross-Modality
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. Issues:

—  Feature fusion; Heterogeneous feature selection; Cross-modal
metric learning



Motivation and Background:

Three Properties of Cross-media

- D
Cross-domain/

Cross-collections
| J

The data about a same topic/event
may be obtained from multiple
sources.

. Issues:
—  Near-duplicated detection; Cross-domain learning; Transfer Learning



Motivation and Background:

Three Properties of Cross-media

/

Cross Space

From Cyberspace to Reality

C

N\

The virtual world (cyberspace) and the real-
world (reality) complement each other,
such as Google Flutrends

omplement

Cyberspace  f—  Reoality



The illustration of the concept of CroSS
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The utilization of cross-media

L1 Three steps:
B Discover the correlations between data objects
Collect all of correlated data together
B Understand their embedding semantics (e.g., objects, events

and topics). _ u
4 e a5




ACM Multimedia 2013

The 215 ACM International Conference on Multimedia
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6. Multimedia Analysis Description

Advances in multimedia analysis have helped enable us to capture, create, and consume
multimedia information with unprecedented ease and frequency. In tumn, the size of personal and
shared multimedia collections and the availability of associated rich contextual and usage
information are both growing quickly. Multimedia analysis must evolve to support interaction with
substantial personal and shared multimedia collections, often across mobile and desktop
environments. The increasingly multi-modal nature of multimedia data collections affords new
opportunities for multimedia and cross-media analysis to progress and address the changing
demands of multimedia consumers.

This track seeks submissions that contribute to continued progress in information extraction and
processing from multimedia data. We actively encourage submissions that incorporate new
modalities, sensors, and information sources into traditional multimedia analysis problems. Topics
of interest include but are not restricted to:

m Multimedia feature extraction
Semantic concept detection
m Cross-media analysis ]

Multi-modal information processing and fusion

Temporal or structural analysis of multimedia data

Machine learning for multimedia analysis

Scalable processing and scalability issues in multimedia content analysis
Advanced descriptors and similarity metrics for multimedia data

Object recognition/detection/segmentation

3D content analysis
Cross-camera content analysis

e D

Cross-media analysis is taken as

main track of
| ACM Multimedia 2013

(. J




The recent research about cross-media learning

— Cross-media Retrieval
— Cross-media Ranking
— Cross-media Hashing
— Cross-collection Topic Modeling



The recent research about cross-media learning
Cross-media Retrieval

« Mission: support similarity search for multi-modal data,

e.g., the retrieval of images in response to a query textual
document or vice versa.

Fanno Creek passes through
ornear 14 parks in several
jurisdictions. The Portland
Parks and Recreation
Department manages three:

Hillsdale Park, with picnic
Lables and adog park near
the headwaters; Albert
Kellv Park, withunpaved |
paths, picnic tables, play

areas, and Wi-Finorth of the
creek about from the mouth,

and the Fanno Creek

Natural Area, north of the

creek about from the mouth.

Query Textual Document Retrieved Images




The recent research about cross-media learning
Cross-media Ranking

e MIssION: learn one appropriate metric for ranking multi-
modal data to preserve the orders of relevance. For example, The
retrieved images are ranked in term of their relevance to the
query textual document in a listwise manner.

“AHansom cab iz a kind of horse-drawn
camiage first designed and patented in
1834 by Joseph Hansom, an architect
from Leicestershire, England. Its purpose
was to combine speed with safety, with a
low center of gravity that was essential
for safe comering. The Hansom Cab was
introduced to the United States during
the late 19th century, and was most
commonty used there in New York City.™

The night skyline of Frankfurt, showing
the Commerzbank Tower {(centre) and the
Maintower (right of centre). Frankfurt is
the fifth-largest city in Germany, and the
surrounding Frankfurt Rhein-Main
Region is Germany’s second-largest
metropoelitan area.

Query Textual Document Ranked Listwise Image Results




The recent research about cross-media learning
Cross-media Hashing

e MISSION: attempt to learn hashing function(s) to faithfully

preserve the intra-modality and inter-modality similarities and map
the high-dimensional multi-modal data to compact binary codes.

Image Parectec®y  Narratiye text

The Palace of Westminstér occupies a site of
approximately 3.24 hectares (8 acres) on the
west bank of the Thames, it has approximately >

v
o
=
=
=
o
=

1,000 rooms, 100 staircases, and 4.8 km of |
passageways. The 96 m high slim Clock
Tower is undoubtedly the most famous

§  feature, and houses the bell known as Big

Ben, from which the Clock Tower is lH ashing Functio n]

colloquially, but inaccurately named.

Photo credit Solipsist

Aschive - Nominate new image

\4
o
=
=
=
o
o

Multi-modal Document
(one image with its narrative text)




The recent research about cross-media learning
Cross-collection topic modeling

e Mission: describe one topic/event with aspect-oriented (e.g.,

who-what-how) multi-modal data (e.g., representative images
or topical words).

-—

22® Mmyspace”
‘ a place for friends

PUMSIRERI I e R RS . cebook




The recent research about cross-media learning

The Challenge
How to bridge both semantic-gap and heterogeneity
gap?
4 4 p
Webpage >
\-
Japan g €Shared
Earthquake |Video s > ,@pace
\
4
Audio >
S \ J
Correlated multi-modal Data




Cross-media retrieval -

Supervised coupled dictionary learning with group structures

L1 Finding relevant textual documents that best match a given
Image;

L1 Or finding a set of images that visually best illustrate a given text
description.

L1 Our Approach:
[ Supervised Coupled Dictionary Learning with Group Structures for

Multi-modal Retrieval (SIIM2 )

L] Yueting Zhuang, Yanfei Wang, Fei Wu, Yin Zhang, Weiming Lu, Supervised
Coupled Dictionary Learning with Group Structures for Multi-modal Retrieval,
Proceeding of the Twenty-Seventh Conference on Artificial Intelligence (AAAI),
1070-1076,2013,2013 (Oral Paper)



Cross-media retrieval -

Supervised coupled dictionary learning with group structures

Cross-modal metric learning methods can be mainly classified into two kinds of
approaches

Seek subspaces to maximize the correlations between

CCA and its — two sets of multidimensional variables.
CCA (Hotelling 1936) kernel CCA (Akaho 2006) ,

extensions
sparse CCA (Hardoon 2011), structured sparse CCA

k(Chen 2012) and GMA(Sharma 2012)

/

Model the similarity across different modality through

) topic proportion which include
The extensions of LDA | =" | corr-L DA (Blei 2003) , tr-mmLDA (Putthividhy 2010),

mf-CTM (Salomatin, 2009), MDRF (Jia 2011) etc.




Cross-media retrieval -

Supervised coupled dictionary learning with group structures

* Too restricted to uncontrolled multi-modal data

CéA and Its extensions The extensions of LDA
€ Assume the different € Assume the different
modality data have a modality data have same
common or a shared topic proportions or Same
subspace topic numbers or have one-
to-one topic
correspondences.




Cross-media retrieval -

Supervised coupled dictionary learning with group structures

[J The proposed Slim2:

Motivated by the fact that dictionary learning (DL)
methods have the intrinsic power of dealing with the
heterogeneous features by generating different
dictionaries for multi-modal data.

-

Image Space R’ I > Lear!‘] < Text Space SR
multi-modal

mapping function

[ Visual Dictionar}/ [ Textual Dictionary]




Cross-media retrieval

Supervised coupled dictionary learning with group structures

The optimization of Slim?2

min Z X — DM A2 Z th||A{ l1,2

M
+83° ST IAM — WemAl 2

m=1 [=1

m=1n#m ﬁ

Sparse

Reconstruction
norm

Group-structure
Preserving with L2-1

Multi-modal
Correlation-preserving
Mapping

Alzgorithm 1 The optimization of SIIM~

Algorithm 2 The multi-modal retrieval by SIiM=

Input The labeled traiming set of N pairs data with AJ
modalities from J classes {(z!", =% ... ,ré"'“._f,;}} e
{[’Kllj.xlzl . -XI'IJ'J-L}}

1: Initialize D = {D) D@ ...
{wil]‘w{l’},. .. ‘w{ﬁfl},

2: Optimize A = {AM AP ... AN by Equ(6).

3: Update D = {D1) D) ... DM} with other vari-
ables fixed using Eq. [T}

4: Update W = {W W3 L
variables fixed using Efl {9]

3: Repeat 2-4 till convergence.
Output multi-modal dictionaries [2 and a set of mapping
functions W

DM} and W =

WM with other

Input The leaned multi-modal dictionanes [} =
(D DR ... D™} and a set of mapping functions
W = {W'“ W 2} ... WML from training data and

query data x.;r = I?! = in the m-th modality

(e (m) . . {m)
1: Imtialize oy J,ur and corresponding retrieval x; '

using equation{ 100,

2: Optimize fth:. )& with other variables fixed using
equation (11),

3: Update S using equation (12),

4: Repeat 2-3 till convergence.

5: the ranked neighbors of %™

Output The retrieved similar data in the n-th modality




Cross-media retrieval -

Supervised coupled dictionary learning with group structures

The advantages of the proposed SIim2 :

Group-structures preserving: encourage the reconstruction of
data from the same group(e.qg., class) by the same dictionary
elements.

0O

L1 Multi-modal correlation mapping: learn a relatively simple
mapping function across modalities.

icti Dictionary D
Dictionary Dx - Sparse ry Jy

W% 5# Coefficient Ax Linear Coefficient Ay r
Mapping W ol P
’W“" Sparse Coding - Sparse Coding —
Y fossil




Cross-media retrieval -

Supervised coupled dictionary learning with group structures

Wiki BoVW(500D).BoW(1000D) BoVW(1000D),BoW(5000D)
Image Query Text | Text query Image | Image Query Text | Text query Image
CCA 0.1767 0.1809 0.1994 0.1859
GMA 0.2245 0.2148 0.2093 0.2267
SCDL 0.2341 (0.1988 0.2527 0.1981
S1iM~ 0.2399 0.2025 0.2548 0.2021

The performance comparison in terms of MAP scores on Wiki data set

Wiki BoVW(500D),BoW(1000D) BoVW(1000D),BoW(5000D)
Image Query Text | Text Query Image | Image Query Text | Text Query Image
CCA 0.2236 0.2340 0.3054 0.2845
GMA 0.2877 0.2548 0.3002 0.2496
SCDL 0.3709 0.2790 (0.3857 0.3037
SIiM* 0.3899 0.2842 0.4084 0.3106

The performance comparison in terms of Percentage scores on Wiki data set

CCA(Hotelling 1936) GMA(Sharma et al. 2012) SCDL(Wang et al. 2012)




Cross-media retrieval -

Supervised coupled dictionary learning with group structures

Image Query Text

Eanne Creck passesthrough

ornear 14 parks inseveral
jurisdictions. The Portland
Parks and Recreation
Department manages three:
Hillsdale Park, with picnic

tables and a dog park near
the headwaters; Albert

Kelly Park, with unpaved

areas, and Wi-Fi north of the
creek about from the mouth,
and the Fanno Creek
Natural Area, north of the
creek about from the mouth.

Text Query Image Top retrieved images

Examples of image query text and text query image over Wiki data set by
SliM2 (top row) and GMA (bottom row)



Cross-media Ranking
Bi-directional Structural Learning to Rank

[ILearn a multi-modal ranking function to preserve the orders of
relevance of multi-modal data.

L1 Our Approach:
LIBi-directional Structural Learning to Rank

[ Xinyan Lu, Fei Wu, Siliang Tang,Zhongfei Zhang, Xiaofei He, Yueting Zhuang,
A low rank structural large-margin method for cross-modal ranking, SIGIR 2013
(Full Paper)

[ Fei Wu, Xinyan Lu, Yin Zhang, Zhongfei Zhang, Shuicheng Yan, Yueting
Zhuang,Cross-Media Semantic Representation via Bi-directional Learning to
Rank, Proceedings of the 2013 ACM International Conference on Multimedia
(ACM Multimedia, Full Paper),2013



Cross-media Ranking

Bi-directional Structural Learning to Rank

Bi-directional structural
learning to rank means that
both text-query-image and
Image-query-text ranking
examples are utilized in the
training period.

This is a general cross-media
ranking algorithm to optimize
the bi-directional listwise
ranking loss with a latent
space embedding.

PAIRED BASED UNI-DIRECTIONAL |PROPOSED METHOD

“oe

Figure 1: A simple demonstration of the latent
spaces learned by different approaches. The same
shape indicates relevant semantics. Colors repre-
sent modalities (i.e., text and imagery). The paired-
based methods like CCA try to unite paired sam-
ples only. The uni-directional-ranking-based meth-
ods like PAMIR and SSI only capture the relation-
ship between two modalities from one direction of
retrieval but their generalization performances are
limited since they do not capture the latent struc-
ture of the query modality, which is represented
as blue queries with red cross in the figure. The
proposed method Bi-CMSRM is trained with bi-
directional training examples by which it can be ap-
plied to both directions of retrieval and the gener-
alization performance is improved.



Cross-media Ranking
Bi-directional Structural Learning to Rank

Image-query-text direction Text-to-image correlation
B | O0000AA

A | A A OO0OCO
@ OO AalA

Image queries Ranked text docurr

Text-query-image direction
(] HH OO A A

A A AOGORDNR
O OOHN AN A
Text queries  Ranked images Image-to-text correlation

Modeling of Multi-modal Correlation



Cross-media Ranking

Bi-directional Structural Learning to Rank

N

&
A
& A

oW

Latent space O

->I< -I -

k% m Eow 1 kxn

o1

Latent space

All the m-dimensional queries (J and n-dimensional target documents d are mapped to a k-

dimensional latent space by Uand V respectively, in which those data objects with the same
semantics are grouped to minimize certain listwise ranking loss (e.g., MAP) directly



Cross-media Ranking
Bi-directional Structural Learning to Rank

T/ EN00AA
Alasoonl : - .
cleemAns | - B Bl )

Image-query-text direction

-

B 0000 AA

A AAQOOMO

. O O D A D A Latent space
: — Image-to-text correlation

Text-query-image direction and Text-image correlation

bi-directional ranking bl-dlrgctlon_al structural Ranking function
Learning with low-rank penal

examples




Cross-media Ranking

Bi-directional Structural Learning to Rank

(1 The objective of Bi-directional structural learning to rank tends to
maximize the margins between the true ranking and all the other
possible rankings of the target documents for each query in the
other modality

Bi-directional
Structural risk empnilcal risk
' N NtM
K 2|V 4
U {Igl”l& HUHF + H HP+ 251 + - ?;lgh

. . The penalty for text-query-image direction
oF ('{iﬁp’éﬁy) 2 A(Y?!y) _‘51.'& . /

Vie{N+1,... N+ M Vye)Y( ~
! { N * +* } yey The penalty for image-query-text direction
5F(Pjatj}3f)E&(}’j,}")—fzﬁj. ( )




Cross-media Ranking
Bi-directional Structural Learning to Rank

Algorithm 1 Bi-directional Cross-Media Semantic Repre-

sentation Model (Bi-CMSIRM).

Input: text-query samples (t;, P:,¥; ). ¢ — 1,...,NV, image-
query samples (pi.t;,¥5), 7 — N +1,...., N 4+ M, trade-
off control parameter A = 0, accuracy tolerance thresh-
old € = 0O

Output: mapping parameters U and V', slack wariables
1 = 0 and £z = O

1: YWV <~— D, W <— @
2: repeat
3: Solve for the optimal U7, V and slack £, £2:
. BN - A
o PP, 2IVIF+ 3
s.t. VM(¥i1.---.¥nN) € W

N 1 N

E SEF(ti, Pi,¥i) = ﬁ E A(wvi.¥vi) — &1
2=1 i=—1
V(¥ N1 YN Ar) E WVWa

1 AT

AT > S (pji.t5.¥5) =
Fe=IT 41

B e 4

T E Ay .¥v5) — &=

F—=IN 41

NV 1% 4+ &1 + &=

ES
N

for z — 1 to N do
T <— argrr;;ax&(y?, ¥) + F(ti, Pis¥i)
¥ e

M

end for
MWL o<— Wi U (F1, ... N)
for 7 — W +— 1 to N + A4 do
b 'ﬁargr;;)axA(y;,y)+F(p3,tj,yj)
»

end for
WWo <— Wo U (FNt1s---, YN par)
until

NHO DENO Un

ke

IR

N N
1 PR 1 —
~ E A(y.,:,yz- -~ E 5F(ti,pigyi) = &1 + €
i—1 i—1
and
IN + AT 1 IN 4+ DT
E (Y. ¥5) — AT E SE(pji-ti,¥:) = &2 + €

F=IN—+1 F=0I 41

1
N

13: return U, V, £, £5;




Cross-media Ranking

CCA 0.2343

PAMIR 0.3093

SSI 0.2821

Uni- 0.3663
CMSRM

Bi- 0.3981
CMSRM

Bi-directional Structural Learning to Rank

0.1433
0.1734
0.1664
0.2021

0.2123

0.2208
0.1797
0.2344
0.2570

0.2599

0.1451
0.1779
0.1759
0.2229

0.2528

Wikipedia dataset in terms of MAP@R

CCA
PAMIR
SSI

Uni-
CMSRM
Bi-
CMSRM

0.1497
0.2046
0.2156
0.2781

0.3224

0.0851
0.1184
0.1140
0.1424

0.1453

0.1523
0.5003
0.4101
0.4997

0.4950

0.0883
0.2410
0.1992
0.2491

0.2380

NUS-WIDE dataset in terms of MAP@R



Cross-media Ranking

Bi-directional Structural Learning to Rank

— -

Bands
Guitar
Bass
Practice
Academy
Jersey
Comedy

KEENAN, JAMES Creative
Scottville. Ml

Bi-CMSRM

Uni-CMSRM

Query text

Bi-CMSRM

Uni-CMSRM

Query 1mage Retrieved documents (shown with corresponding images)

Figure 3: Exemplar retrieval comparison between the proposed Bi-CMSRM and Uni-CMSRM on the Wiki
dataset. For text-query-image direction, the query text is shown with its corresponding image and selected
words. For the image-query-text direction, the retrieved documents are shown with their corresponding
images.



Cross-media Hashing

Hashing I1s promising way to speed up the ANN
(approximate nearest neighbor ) similarity search, which
makes a tradeoff between accuracy and efficiency.

JlOOlll

)

[ High-dimensional featureg [ Compact binary codes]




Cross-media Hashing

Homogeneous —

Features

olor
Heterogeneous
Texture

Features
Shape
. Image
Multimodal Text
data { R
Audio

Input Data
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Uni-modal
Hashin
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Hashing
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Multi-modal
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Three kinds of hashing approaches

Locality Sensitive Hashing
Spectral Hashing

Multiple Feature Hashing
Composite Hashing(CHMIS)

Cross Modal Sensitive Similarity
Hashing(CMSSH)

Cross View Hashing(CVH)

Multimodal latent binary

embedding(MLBE
N 9( )

Representative

methods



Cross-media Hashing:
Sparse Multi-modal Hashing

Multi-modal hashing tends to utilize the intrinsic intra-
modality and inter-modality similarity to learn the
appropriate relationships of the data objects and provide
efficient search across different modalities

Approach: Sparse Multi-modal Hashing

Fel Wu, Zhou Yu, Y1 Yang, Siliang Tang, Yueting
Zhuang, Sparse multi-modal hashing, IEEE Transactions
Multimedia



Cross-media Hashing:
Sparse Multi-modal Hashing

Step 1. The Joint Learning of Multi-modal Dictionaries

Intra-modality Inter-modality
similarity similarity
modeling dictionaries

49



Cross-media Hashing:
Sparse Multi-modal Hashing

L1 Our approach is formulated by coupling the multi-modal
dictionary learning (in terms of approximate reconstruction of
each data object with a weighted linear combination of a small
number of “basis vectors”) and a regularized hypergraph penalty

(in terms of the madeling of multi-maodal correlation).
Sparse Hypergraph Laplacian
Reconstruction Penalty
“ \ /
min X — DZAZ|? Y —DYAY||Z +Q(A
Jmin I3 +1 I3 +Q(A)
st |dzZ <1, |dY% <1 Vk=1,2,..K
QA) = AllAlL+ 5 3 >3 FHla — a;ll?

ecE {i,j}Ce
—  AllA|L + aTr( AL, A7)



Cross-media Hashing:
Sparse Multi-modal Hashing

L1 Step 2: The Generation of Sparse Codesets

-
-~
-
-
-
-

-
-~
P

dinosaur,
jaw,
Jurassic

dinosaur,

ancient,\
| ‘_l. fossil '\

sport,

\,_-—=—¥ football, _—
- \ NFL
sport, —__7 ————— \\ | I
football, ™7 AN Dic

NFL

\ I bﬁ

\‘ dinosaur, | )
ancient,
fossil

Multi-modal objects Sparse Reconstruction Sparse codesets

Both intra-modality and inter-modality similarities are preserved. For examples, two “dinosaur”
Images have the same sparse codeset, and two “dinosaur” images have similar sparse codesets
with their relevant text (dinosaur, ancient and fossil, etc). On the contrary, two “dinosaur”
Images have apparently different sparse codesets with their irrelevant text(sport, football, etc)
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Fig. 1. The algorithmic flowchart of our proposed SM2H. For the sake of illustrative simplicity, we assume only two kinds of data objects (i.., images and
texts) here. A hypergraph is first constructed to model the correlations between multi-modal data objects, then the multi-modal dictionaries are jointly learned to
obtain one image dictionary and one text dictionary respectively. Each data object can be succinctly represented using a limited corresponding dictionary atoms
and the corresponding sparse coefficients. Finally, the hashing scheme is conducted to identify those significantly informative component(i.e., the sparse codes
with large coefficients). The selected component indices are used to construct a sparse codeset for each data object. We can observe the sparse codesets well
preserve both intra-modality similarity and the inter-modality similarity. For examples, two “dinosaur” images have the same sparse codeset, and two “dinosaur”
images have similar sparse codesets with their relevant text (dinosaur, ancient and fossil, erc). On the contrary, two “dinosaur” images have apparently different
sparse codesets with their irrelevant text(sport, football, err:).\
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TABLEIL ~ THE PERFORMANCE COMPARISON IN TERMS OF MAP TABLEIV.  THE PERFORMANCE COMPARISON I TERMS OF MAP SCORES ON WIKI DATA SET WITH CODE LENGTH m EQUALS T0 16, 32, 48 AND 64,
SCORES ON NUS-WIDE DATA SET WITH CODE LENGTH m EQUALS TO 16, AND THE EQUIVALENT SIZE OF SPARSE CODESETS IN SM2H. 500-D BAG-0F-V1suAL-WORDS (BOVW) AND 1,000-D BAG-0F-TEXTUAL-WoRDS (BOW),
32, 48 AND 64, AND THE EQUIVALENT SIZE OF SPARSE CODESETS IN AS WELL AS 1,000-D BAG-0F-VISUAL-WORDS (BDVW) AND 5,000-D BAG-0F-TEXTUAL-WORDS (BOW), ARE USED TO REPRESENT EACH IMAGE AND
SMQH. THE ITEMS SHOWN IN BOLD ARE THE TWO BEST RESULTS, THE TEXT RESPECTIVELY. THE ITEMS SHOWN IN BOLD ARE THE TWO BEST RESULTS, THE RESULTS WITH ASTERISK ARE THE BEST
RESULTS WITH ASTERISK ARE THE BEST
BoVW(500D),BowW(1000D) BoVW(1000D),BoW(3000D)
code lengths Task Methods code lengths code lengths
Tusk Methods oo equivalent .m _cQUi"?]c"T | lur Liquif-alc‘nt N
sizes of sparse codesels sizes of sparse codeset sizes of sparse codesels
m=16 | m=32 | m=48 m = 64 m=16 | m=32 [ m=48 | m=6d | m=16 | m=32 | m=48 | m=64
or o or or or o or or or or o or
C(255) | CE0,10) | C100,10) | C(150,15) C(255) | C010) | C00,00) | Ci1s0,15) || Ci253) | CE0100 | CO00,00) | Cl150,15)
(MSSH 0.4410 0.4364 03878 (.3863 CMSSH | 01697 | 01895 | C.I%06 (.1701 00914 | 0.0890 0.1921 (11903
) CVH 03673 03726 03652 03573 . CVE | 00897 [ 0088 | 00850 | 0088 02064 | 02040 | 02017 | 0192
mage-query-texts ey 0373 | 03586 | 0308 e QU e NIRE 00T | 009 | 00 | GIBT || 000 | 037 | 0089 | 0I5
SVEH, | 0430 | 03855 | 04506 | 0.440 SH, | 001 | 000 | 020 | 02284 || 020% | 02080 | 02020 | 0094
SMPH, | 04496% | 04529%F | 04801F | 04520% SMH | 0937 | 01847 | 02038 | 02273 || 02013 | 02000* | 02065 | 01980+
CMSSH | 04013 013380 03609 03622 CMSSH | 01985 | 01992 | 02003 | 02030 | 02050 | Q1998 | 00947 | 02003
) VA 03771 03679 03337 03300 R CVH | OMIT | 01768 | 0105 | 0804 || 02206 | 02070 | 02085 | 0207
fext-query-images e T 0w T R T 0 WTEIES TNTRE | 000 | 012 | 076 | 0168 || 0090 | 0087 | 00816 | 0%
SMPH, | 04689% | 0.4660° | 0.4879% 04457 SVFH; [ 02102 [ o8 | 02 T 02w 02257 | 02130 | 02287 | 0220
SMZH, | 04577 04463 04487 04685 SMHy | 02139 | 0.2056% | 02205 | 02239% | 02311% | 02164* | 0.2370¢ | 02336

MAP score on NUS-WIDE MAP score on WIKI
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Top retrieved texts and their corresponding images
For the image-query-texts direction, we can find that given a ‘battleship’ image belongs to

the “warfare” category, the top retrieved texts of our SM2H are clearly relevant while the
three counterparts all produce some irrelevant results.
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Top retrieved images
For the text-query- 1mages direction, given a text about “church”,“building”,etc, the top
retrieved images of SM2H are the most relevant compared with the counterparts. Moreover,
the retrieved result of SM2H2 is more accurate than SM2H1 in human understanding.

CMSSH

MLBE




Conclusion

IS a key for cross-media understanding!

The appropriate utilization of contextual information

Color

Global {
Features Texture -
Shape | '@ Appearance Lion
SIFT I
The lion (Panthera leo) is one of the four Local ‘ Habitats ’ G ra.SS
big cats in the genus Panthera and a Features GLOH
member of the family Felidae. With some i
males exceeding 250 kg in weight, it is the LBP ‘ B|0|0gy
second-largest living cat after the tiger. e
Wild lions currently exist in sub-Saharan
Africa and in Asia (where an endangered TF*IDF
remnant population resides in Gir Forest Textual {
National Park in India) while other types of Features n-Gram
lions have disappeared from North Africa POS
and Southwest Asia in historic times
Multi-modal Data Low-level Features Attributes High-level semantics
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