Intro to Media Computing

Lecture 3:
Image Content Analysis

and Search
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How to represent images?
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Image Feature Extraction

= Simplest is as color histogram!!



Histogram Representation 13

= What is histogram?

o The histogram function is defined over all possible intensity
levels

o For 8-bit representation, we have 256 levels or colors

o For each intensity level, its value is equal to the number of
the pixels with that intensity
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MATLAB function >imhist(x)



What is Histogram

Example: Consider a 5x5 image with integer

Intensities in the range between of between 1 & 8,

its histogram function h(r,)=n, Is:
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Histogram
Function:

h(r,) =8
h(rz) =4
h(r,) =3
h(r,)=3
h(l’5) =2
h(r,)=0
h(r,)=1
h(r;F) =5

Normalized
Histogram:

p(r,) =8/25=0.32

p(r,) =4/25
p(r,)=3/25
p(r,)=3/25
p(r,)=2/25
p(r;)=0/25
p(r,)=1/25
p(r;) =5/25

=0.16

=0.12

=0.08
=0.08
=0.00

=0.04

=0.20



Examples of Image Histogram |s::

Original image

Graph of the

histogram function

0000
o000
o0
o
Observation:
* Image
Intensity is
skewed (not
fully utilizing

the full range
of intensities)

 What can be
done??



Color Histogram -1 oo

Let image | be of dimension p x g

For ease In representation, need to quantize p x g potential
colors into m colors (form << p x Q)

For pixel p = (x,y)€ I, the color of pixel is denoted by I(p) = c,

Green

Construction of Color Histogram
Extract color value for each pixel in image o 3

Quantize color value into one of m quantization B imed
I eve I S Blue Magenta

Collect frequency of color values in each ** Note:
guantization level * Divide each

: _ B B color axis into
H[r,g,b]ZZZ{l If IR[p’q]_r’IG[p’q]_g’IB[p’q]_b nr’ ng’ nb bInS
5 |0 otherwise m=n,xn,xn,

where each bin corresponds to a color in the
guantized color space



Color Histogram -2 see

e Thus, image is represented as a color histogram H o
of size m

e where H[i] gives # of pixels at intensity level |
e For example:

Y| T
MWIIMM hmnr it i

Into a single
guantized histogram

e Normalize H to NH by dividing each 04

entry by size of image p*q ﬁ 0218 ) o



Color Histogram -3 33

e Desirable properties of feature vector f(I):
[f(1)— f(I’)| should be large iff | and I’ are very different,
f(.) should have property of monotonicity
f(.) should be fast to compute
f(1) should be small in dimension

e Color Histogram satisfies all these properties
But it has no spatial info
Not robust to large appearance changes



Color Representation -1 o

e Need some measurement of color differences

e RGB Color Space is used for display devices
Each color is represented as a triple (r;, g;, b;)

But it is not designed for human, as it is perceptually
non-linear

e Need to use perceptually linear color spaces
Luv, Lab, YUV, YC.C,

e In linear color space, say YC,C,, the difference
between 2 colors, C; and C;, can be measured by
(Euclidean) distance between them in the space:

Diffy, (i, ) = /(Y% Y})2 +(Cr —Crj)? +(Ch; ~Cb;)?

and this corresponds well with human perception of color differences



Color Representation -2

= Describe color in terms of luminance & chrominance

= YUV Model:
o Y: Luminance or Black-and-White component
o U & V: Chrominance or color components
o Basic color format used by the NTSC, PAL, SECOM
o U and V subsampled to reduce bitrate

‘YY) ( 0299  0.587 0.114 R
U |=—-0.147 —-0.289 0436 |G
¥ ) | 0,615 —0515 —0.100)| B

AN Y,




Color Representation -3

= YCrCb Model

o Y: Luminance component
o Cr & Ch: Chrominance or color components
o Used in digital image/video compression standards

Y] [ 0299 0587 0114 R
Cp|=|-0.16875 -033126 05 |G
C/|] | 05  -041869 0.08131] B
R] [1.0 0 1.402 Y~

G|=[10 -0.34413 -0.71414 | Cy
B| |10 1772 0 C,




Metrics for Histogram Matching -1| ss::

e Given two images with histogram Q and D:
0.5 0.5

0.2

0.1 0.1 0.1 0.1

0

H(Q) =[0.1 0.1 0.5 0.1 0.2] H(D) =[0.2 0.5 0.0 0.2 0.1]

e The difference between Q & D in L., or city block, dist is:
Diff[Q, D]=2|H(Q, j)-H(D, J)|
j

or the normalized version

NDiff,[Q, D] =Zj:[H Q. D™ mlal;(l {(ﬁ’(g,_j)'l(.[()bj,);)}]

Diff1 =0.1+0.4+05+0.1+0.1=1.277
NDiffl = 0.05 + 0.08 + 0.5 + 0.05 + 0.05 = 0.75 ??

Differences are larger than it is perceived!!



Metrics for Histogram Matching -2 | ss2:

e H(Q)=[0.1 0.1 0.5 0.1 0.2] H(D) =[0.2 0.5 0.0 0.2 0.1]

0.5 0.5

0.2
0.1 0.1 0.1

0

e Itis more useful to consider similarity, rather than
differences

e The normalized similarity between Q & D in L, Is:

| _ |H(Q, j)—H(D, j)|
NSim,[Q, D] = > [H(Q, ) * (- j j
im,[Q, D] jEZS:;[ (Q D O ax{H @, ), H (D, )}

)]

e NSim, (Q,D)=0.05+0.02+0+0.05+0.05=0.17 ??
Again, the similarity looks less than perceived!!



Metrics for Histogram Matching -3 s22:

e H(Q)=[0.1 0.1 0.5 0.1 0.2] H(D) =[0.2 0.5 0.0 0.2 0.1]

0.5 0.5

0.2
0.1 0.1 0.1

e Why is similarity looks less than perceived!!

e Infact C, & C; (say S,5=0.8) are very similar, so are C,
& C; (say S,5=0.7)

The actual similarity between H; and H, should consider
this fact. Hence:
NSim, (Q,D) = 0.05 + [0.02 + 0*0.8] + [0 + 0.02*0.8] +
[0.05 + 0.05*0.7] + [0.05 + 0.05*0.7]
= 0.256 (instead of just 0.17)..



Modeling Color Similarity -1 ee?

e InYC,C,, the difference between 2 colors, C; & C;,
can be measured by the distance between them as:

Dist,_ (i, j) = /(Y —Y;)*+(Cr, ~Cr;)*+(Cb, ~Cb;)?

& this corresponds well with human perception of color differences

e The similarity between two colors can be incorporated as:

0 when Dist(i, J) > T,
SIM (i, j) =+
1 Dist(i, J) otherwise
Tcolor
In practice T, IS small, say T_,,,, = 0.1



Modeling Color Similarity -2

e In previous example, color similarity

IS approximated as hat function!!

e Other functions are possible, such
as the Gaussian function:

e The perceptually similar color matrix S(i, j) is:

1
Sto
S0
S 0

So
1

SN,N—l

.5 o

So, N

SN—l,N
1

= 5(1,)) gives the similarity between colors i and |
= This matrix is symmetrical and can be pre-computed




Metrics for Histogram Matching -4 | ¢

e Recall the normalized difference between Q and D
In L, distance for color i is:

) o L H@DHD.)
e L CICD I

and its normalized similarity is:

L w1 H@Q,1)—H(D,1)|
NSim, (i)=H (Q,i)*( max{H (Q,i),H(D,i)})

* The overall similarity with perceptually similar colors is:

Sim. ... (Q, D):ZZ NSim, (i) S(i, j) NSim,(j)



Color Moment

e Letthe set of pixel be:
| = [p4, Py, --- Pr], fOr a total of R=(p x q) pixels

e Represent color contents of image in terms of moments:

15t Color moment (Mean): %Zi X;

2"d Color Moment about
mean (Variance):

e \We can use these to model image contents

e Advantages: Simple & efficient; Only one value for each

representation
e Disadvantage: Unable to model contents well

1 -
Ezi(xi—X)Z

e However, it can be effective at sub-image level, say sub-blocks

HOW TO DO THIS??



Color Coherence Vector (CCV) | s:::

e Problems of color histogram rep”

e Easy to find 2 different images with identical
color histogram

e As it does not model local and location info

e Need to take spatial info into  Exactly same color
consideration when utilizing colors: distribution & similar shape
e Color Coherence Vector (CCV) representation
e Color Correlogram representation

o CCV

e A simple and elegant extension to color histogram
e Not just count colors, but also check adjacency

e Essentially form 2 color histograms — one where colors form
sufficiently large regions, while the other for isolated colors



i TXx
CCV Representation -2
o000
o0
®
e Example:
o Define sufficiently large region as those > 5 pixels
Region |A | B E
2112|1211 211122 ol 5 . N ;
2(2(1]2]1]1 202]1]|2 olor
' 1 11
211]3(2(1(1 2|1 2 Size 513 6
2121211133 2122 3
2(2]1(1(3|3 2|2 Color |1 |2
212]1(1(3|3 212 Ha 11 | 15
HB 3 |0

e Treats H, and H; separately

e Similarity measure:

e Give higher weight to Ha, as it tends to correspond more to

objects

SIM(Q, D) = u SIM(Qq, Da) + (1- 1) SIM(Qg, Dp)

for y>0.5
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Texture Representation
e What is texture? .

e Something that repeats with variation
e Must separate what repeats and what stays the same
e Model as repeated trials of a random process
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| Metal

e Tamura representation: classifies textures based on
psychology studies

» Coarseness * Linelikeness
 Contrast * Regularity
* Directionality * Roughness

e Consider simple realization of Tamura features
= May be simplified as distributions of edges or directions



Edge Representation -1 ses

e Spatial Domain Edge-based texture histogram

- To extract an edge-map for the image, the image is first
converted to luminance Y (viaY = 0.299R+0.587G+0.114B)

- A Sobel edge operator is applied to the Y -image by sliding the
following 3 X3 weighting matrices (convolution masks) over the

Image.
1|0 |1 1 (2 |1
2 |0 |2 0 |0 |0
10 |1 12 |1

- The edge magnitude D and the edge gradient
¢ are given by:

— t dy
¢ =arc and—

X

Dz\/d2+d2




Edge Representation -2

e Represent texture of image as 1 or 2 histograms:

Edge histogram

= Quantize the edge direction @ into 8 directions:
2

L 14
| =

X 7
S = Setup H(P)
M LIE : Elé (with 8 dimension)

A S

.

-
t
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"1"
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/;/;:",‘*

N 4] WL

- PL

Magnitude histogram
= Quantize the magnitude D into, say 16 values
= Setup H(D), with 16 dimension.

e Edge Histogram is normally used




Segmented Image Representation

Problems with global image representation — can'’t

handle layout and object level matching very well

One simple remedy: use segmented image (example, 4x4):

(1,1)

(1,2)

(1,3) | (1,4)

(2,1)

(2,2)

(2,3) | (2,4)

(3.1)

(3.2)

(3,3) | (3,4)

(4.1)

(4.2)

(4,3) | (4,4)

Compute histograms for individual window

Match at sub-window level between Q and D:
o between corresponding sub-windows or

o between all possible pairs of sub-windows
o May give higher weights to central sub-windows

Pros: able to capture some local information

Cons: more expensive, may have mis-alignment problem



Metadata of Images 34+

e Cameras store image metadata as "EXIF tags" ¢

o EXIF (Exchangeable image file format )
o Timestamp, focal length, shutter speed, aperture, etc
o Keywords can be embedded in images

64308 Properties 2]

| General | Secuity| Summary |

D Color Representation

[ Nate Pichire Taken

Property Value ~
3 width 3648 pixels '
[ Height 2736 pixels
[ Horizontal Resolution 314 dpi
[ vertical Resolution 314 dpi
[ Bit Depth 24
[ Frame Count 1
[ Equipment Make OLYMPUS IMAGING CORP. ;
[ Camera Model E-510
D Creation Software Version 1.1 ‘

Uncalibrated

[ Flash Mode

[ Focal Length 14 mm 7 ‘
[ F-Number Fl6.3 "
[ Exposure Time 17125 sec.

[ 150 Speed 150-100

[ Metering Mode Pattern

[ Light Source Unknown

D Exposure Program Creative Program (biased t...

D Exposure Compensation 0 step

1NMAMIZONG 11:30 4M

v

[ ok

][ Cancel ]

9




Metadata of Images -2 o
e Other form of metadata: semantic tags (or
concepts)

Supply manually by users
Reasonable thru social tagging

e With metadata, we can perform advanced analysis:
Use existing set of semantic tags
Automatic keyword generation (leveraging on EXIF info)
Camera knows when a picture was taken...
A GPS tracker knows where you were...
EXIF knows the conditions that picture was taken
Your calendar (or phone) knows what you were doing...

Combine these together into a list of keywords
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Similarity Measure -1 Sees

How to measure the similarity between two images
given the feature vectors?

Feature
vectors:

F=[fyfofu]l  F=[fnfm... o]
Dist(F;, F,)="?

® Euclidean (L2) Distance ® Chebychev Distance
®* Manhattan (L1) Distance  ® Mahalanobis distance

®* Minkowski Distance ® Cosine Similarity

 Similar to text measures



Similarity Measure -2

Euclidean (L2) Distance:

dist = \/Z(flk - f2k)2
k=1

= The Euclidean Distance takes into account both the direction

and the magnitude of the vectors

= More for correlated data

Examples: point X y
» &pl pl 0 2
» " 02 2 0
1- ° ° p3 3 1
p2 p4 S 1
0 e —
0 1 2 3 5 6
pl p2 p3 p4
Distance Matrix: | Pl 0| 2828 3.162] 5099
p2 2.828 0 1.414 3.162
03 3162| 1414 0 2
p4 5.099 3.162 2 0




Similarity Measure -3 Sees

n
Manhattan (L1) Distance dist = ZI fre = Toc |
k=1

= Manhattan distance represents distance that is measured along
directions that are parallel to all axes.

= More for uncorrelated data

Center Camps

0 Green: Euclidean Distance

O Blue: Manhattan Distance




Similarity Measure -4 33

Mahalanobis Distance st \/(Fl ~F) SYF-F)

= Mahalanobis Distance takes into account the correlations
of the data set and is scale-invariant.

= S is the distance (or color similarity) metric for Mahalanobis
distance

F-F
H FlH ' H FzH

Cosine Similarity

dist =cos(f) =

A

= The Cosine Similarity takes into account only the angle and
discards the magnitude.



N 1t
Similarity Measure -5 o
l o
Minkowski Distance : \ m | ™
dist = {Z| fi — ol }
k=1

= Minkowski distance is a generalization of Euclidean and Manhattan

distance.

when m=1: Euclidean Distance

when m=2: Manhattan Distance

Chebychev Distance dist = max {| f, — f,,|}

= Chebychev distance simply picks the largest difference between any
two corresponding coordinates.



Similarity Measure -6 3

e Histogram Intersection
>-min{H(Q, j),H (D, j)}

Diff,, [Q, D] =2
Tl Q Bl = TR @I B




Similarity Measure -7 Sees

How to select the correct similarity measure?

Euclidean distance: The most popular distance.

Manhattan distance: between two items is the sum of the
differences of their corresponding components.

Cosine distance (angle): Takes into consideration only the angle,
not the magnitude.

Chebychev: Focuses on the most important differences.

Mahalanobis: Can warp the space in any convenient way. Usually,
the space is warped using the correlation matrix of the data.
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Relevance Feedback

* Performance of auto-retrieval is limited

o Visual analysis not precise

o Users’ queries are ambiguous

« Develop interactive system
o Users indicate which image is
relevant to query

o System update query for new
retrieval

o The histogram-based RF formula:

QK =QM +a PR - BYNR

positive : 39
negative : 33
submited : 0
labeled : 72
unlabeled : 928

nnnnnnnnnnnn

current  processed

84
0
90
910
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Current Trends T

e Media search

e Media Search 1.0 (uses text and visual features, with
user interactions)

o Media Search 1.27? (towards concept-based search) :

Needs to detect visual concepts in images, such as
grass, tiger etc.

e Media Search 2.0 (leverages on social tagging)

e Towards large-scale commercial applications
e Consumer vs. Enterprise search

e Vertical domain search
e Fashion search..

e Mobile search




Next Lesson ooo

e Feature point extraction
and matching

e Concept detection in
Images

Concepts present:

Tiger, grass.

e You will be ready for assignment 1: full details
will be given next week



