Module 6:
Fundamentals of Digital Image




Outline of Lecture

e Digital vs. Analog Signals
e Digital Image Representation
e Fourier Transforms

e REFERENCES:
e R.C. Gonzalez & R.E. Woods (1992). Digital Image

Processing. Addison-Wesley. (parts on Analog signals)

e Z.N. Liand M.S. Drew (2003). Fundamentals of
Multimedia. Prentice Hall (Chapter 3)




Analog Representation ot

e An analog quantity can vary continuously over space
and/or time.
It is represented as f(x,y,z,t)

e Analog physical quantities can be transformed into
electrical signals using sensors

e Signals can be represented as waves which can
take up any possible real values within the
Instrument range (amplitude continuous)

e Value of the analog signal can be determined for any
possible value of space or time variable (hence it is
space or time continuous)



Waves -1 ool

e \Waves can be conceived as energy propagating from
one place to another

o A wave essentially represents a graph or plot of the motion of
a set of particles in the path of a wave over space or time
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Waves -2 444

Sinusoidal Waves °

e The concepts of a wave can be explained by
considering a sinusoidal function:
y = Asin(t) or y =B cos(t)
sinusoids are easier to deal with as they are periodic functions
and can be represented by simple equations
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e J.B. Fourier demonstrated that any irregular shaped
wave can be constructed from a combination of a
number of sine & cosine waves

Sinusoidal waves therefore can be considered as a kind of
elementary wave that can be used as the building blocks to
generate other waves




Waves -3 cecs
Composite Waves -4

e Two or more sinusoidal waves can combined to
generate a composite wave which may have a non-
sinusoidal shape

e The composite shape is obtained by adding up the
amplitudes of the component waves at all points
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Waves -4 e38s
Amplitude and Frequency 1T

e The peak amplitude of a wave is the max.
displacement of oscillating particle from its mean
position

e It represents the intensity of the wave; e.g. the brightness of

light, the loudness of sound, etc. N

e The frequency refers to how fast / \ \
the particle is oscillating:
e Define as the # of oscillations per unit \/ \/
time
e It physically represents the pitch of
sound or color of light

o A higher pitch results in a shrill sound /\ /\ A A /\ I ﬂ / ﬂ \ (\ \
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A to D Conversion -1 eseo
Sampled, Quantized, Digital 52'
e In contrast to analog guantities,

e Sampled quantities have continuous value at discrete space
or time, i.e., at certain points in space or instances in time

e Quantized guantities have discrete values at continuous
space or time

e Digital quantities have discrete values at discrete space or

time

il ‘ it el
Sampled Signal: Quantized Signal: Digital Signal:
discrete time, continuous time, discrete time,

continuous values discrete values discrete values



A to D Conversion -2
Sampling

e The first step in A-D conversion is SAMPLING
e It records values of wave at pre-determined discrete set of

points and discards other values

e For time-dependent quantities like sound, sampling is done
at specific intervals of time (e.g. 10 times per second) --

time-discretization of the signal

e For time-independent quantities like a static image,
sampling is done at regular space intervals (e.g. 10 times
per inch) -- space-discretization of the signal
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A to D Conversion -3 0o
Sampling Rate 44

e Sampling rate or sampling frequency: number of
samples taken per second or per inch
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e Balance of accuracy (higher sampling rate) and cost

e The digitized version will always be a degraded version
of the original analog wave
e Lose some data in between two sample points
e Process irreversible
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A to D Conversion -4 0o
Quantization -4

e Quantization levels: number of different sample
values used to represent a digital quantity

e We use n-bit to represent magnitude, with values range from
Oto2"-1:0,1,2, ..., 2-1
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Quantization Error coes

e Errors in digital output

e Because of quantization error there is always a distortion of
the wave when represented digitally. This distortion effect is
referred to as noise
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A to D Conversion -5
Sampling Theory

e Nyquist's theorem states: The sampling frequency
must be greater than twice the frequency of input
signal in order to be able to reconstruct the original
signal accurately from the sampled version.

Sampling points
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A to D Conversion -5 °es.

Sampling Theory 00
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A to D Conversion -6 °es.

Sampling Theory 34~

e Nyquist's theorem states: The sampling frequency
must be greater than twice the frequency of input
signal in order to be able to reconstruct the original
signal accurately from the sampled version.

e Higher frequencies lead naturally to good approximation

e At Nyquist frequency, the output wave Iis quite blocky in
appearance but all the cycles are correctly reproduced

e At < Nyquist frequency, the output fails to reproduce all the
cycles of the original wave

=>»under-sampling or aliasing
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Outline of Lecture

e Digital vs. Analog Signals

e Digital Image Representation

e Fourier Transforms
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Digital Image Representation

e A digital image f(x,y) can be considered as a 2D
matrix whose row and column indices identify a point
In the image and the corresponding matrix element
value denotes the gray level at that point

Pixel values 1n highlighted region
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Example of Digital Image
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Digital Image Resolution 4

e The intensity of a monochrome image f at coordinate
(x,y) I1s f(x,y)=l, the gray level of image at that point:
e |isthe gray level of image at (x,y), with | =[L i, Laxl
e Common practice is to shift the interval to [0, L-1]
e Hence 0 = black , L = white
e L determines the intensity resolution of images, e.g. L=256 = 28

e Resolution depends on sampling and gray levels
o # of gray levels: [ T i i 4
L=2P | =
e # of bits required to store
a digitized image
b=MXxNXPp
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Effects of Spatial Resolution: eels
Checkerboard Effect oo

a | b | c

d| e | f

(a) 1024x1024

(b) 512x512

(c) 256x256

(d) 128x128

(e) 64x64

(f) 32x32

e If the resolution is decreased too much, the
checkerboard effect can occur

20



Effects of Intensity Resolution: i
False Contouring oo

(a) Gray level = 16 (p=4)
(b) Gray level = 8
(c) Gray level =4
(d) Gray level = 2

e If the gray scale is not enough, false contouring can
occur on the smooth area which has fine gray scales
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0000
" 1 o000
Non-Uniform Sampling
:.
e For a fixed value of spatial resolution, the
appearance of the image can be improved by using
adaptive sampling rates
e fine sampling required in the neighborhood of sharp gray-
level transitions
e coarse sampling is necessary in relatively smooth regions
” A == SRy TR
- : e ;\ & f-.f\;-.’: M, 2
a b
FIGURE 2.22 (a) Image with alow level of detail. (b)) Image with a mediom level of detail, () Image with a rel-
atively large amount of detail, (Image (b} courtesy of the Massachusctts Institute of Technology. )
e A simple way is to divide image into blocks and perform 2

different sampling on each block



Gray-Scale Digital Image -1 eoet
= Digital image: represented by a matrix of pixel values

0 Square sampling grid is used, with pixels equi-spaced along
the two sides of the grid

= Binary image: Pixel values are binary — (0,1) or (black, white)

= In general, we want to represent something more complex

0 Each pixel contains a range of intensity values
o Typical gray scale image contains 256 (=28) intensity values

shows an
— 8x8 2-D
array of
binary
values
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Gray-Scale Digital Image -2

* Intensity at each pixel is then represented by an integer

Plane 7

o For p bit-planes, the value k
ranges from [0 - 2P-1] Planc 0
o Binary Image: p=1 k

o If p=8, we have gray levels
from O (black) to 255 (white)

K Bitplane

* Pixel values are represented as quantized values

o Quantization — a way of mapping a continuous range of values (0~1)
to discrete integer intervals

o For p=3, there are 8 ranges of:
0:0~1./8.,1:1./8.1~2./8.,.. 7. 7./8.~1.

o What is the mapping function?
Vo = Integer (v, * n), where v,=original value, n=8

o ISSUE: Is quantization reversible?

24



Color Digital Image 4

= What about Color Images?
o Colors are modeled by {R, G, B} triplets
o Divide the bit-planes into 3 groups, p/3 bits for R, p/3 bits for G, ..

= If three 8-bit integers are used (24-bits per
pixel) , then it is a color image with 8-bits per
color channelof R, GorB = 16.7 million SN e
possible colors e Gty

o0 Usually an extra alpha byte (for special effect info) is stored for each
pixel = 32-bit image

25



Outline of Lecture

e Digital vs. Analog Signals

e Digital Image Representation

e Fourier Transforms
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Signal Processing o

e It involves the transformation of a signal into a form
which in some sense more desirable for analysis
(e.g. analog to digital, or spatial to frequency)

e Analog Signal Processing Tool
oscilloscope: Tektronics and HP instruments
analog computer

e Digital Signal Processing (DSP) Tool
mathematical analysis and formula
computer software package, e.g. MATHLAB

e DSP Applications
DSP chips, ASIC'’s, embedded systems, etc.

27



Fourier Transforms- Overview oo

e The Fourier transform produces representation of
any (2D) signal as a weighted sum of sines and
cosines. Because of Euler's formula:

eld = cos(q) +j sin(q), where j2=-1.

e Given: animage f; its Fourier transform F:

e The forward transform is: F = T{f}
from spatial domain to (continuous) frequency domain.

e The inverse transform is: f = TY{F}
from frequency domain back to spatial domain.

e The Fourier transform is an unique and invertible operation:
f=TYT{f}} and F=T{TYF}}

28



Fourier Transforms- cont. eoe?

o0
e f is In spatial domain

Its Fourier transform, F, is in frequency domain

e The invertible property enables signals to be transformed
between both domains without loss of information

e WHY we want to transform signals to frequency domain?

e Because many operations are easier to perform in frequency
domain than in spatial domain. For example:

e Image filtering:
low-pass filter (to remove details): simply remove high frequency
component while retain low frequency component
High-pass filter (to sharpen details): enhance high frequency
components

e Compression: remove high-frequency component to save storage

e Image enhancement: scale image contents
29



Fourier Analysis :

e Trigonometric series of periodic signals

Basically, any periodic function (piecewise continuous with
left/right derivatives existing at discontinuities) can be
expressed as an infinite sum of Sines and Cosines

e Example: a periodic square wave

4k(. 1 . 1 . j
— 1| SINX+—SIN3X+—SIN5X +...
T 3 5

and the periodic function that it produces:

AN AW AT AR
VAR RVAVRY AW

- Towards a square wave
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Fourier Analysis — 1D Case oe

e Let f(x) be a continuous function of a real variable
X. Its Fourier Transform F(u) Is:

Fu) =[7_ f(xe 12 Xdx

where u is the frequency variable

e The inverse transform from of F(u) to f(x) Is:
f(x) =["_F(uktIZ%dy

e f(X), F(u) is called Fourier Transform pair

e They will exist if f(x) Is continuous and integrable, and
F(u) is integrable

o As e 12X _(og(2ux) — jsin(272ux)
F(u) is computed as integral sum of sine & cosine terms”



Discrete Fourier Analysis- 1D .

e Suppose f(X) is discretized into a series
f(x) = {f(xy) + kdx}, k=0,1,.. N-1

e The forward Fourier Transform is:

N -1 .
F(u)=% > f(x)e 1INy —0,1,2,..,N-1
x=0

e The corresponding inverse Transform is:

N -1 -
f(x)= > F(u)et122x/N v _012, .., N-1
u=0

e Fast Fourier Transform (FFT)
As discussed in many textbooks and tool packages
has N*logN operations (efficient implementations) 32



Fourier Analysis — 2D Case o

e Fourier transform extends easily to 2D case with
f(x,y) of 2 variables. Its Fourier Transform F(u,v) Is
given by:

F(u,v) =["_[°_f(x,y)e 127(X+W)gy dy

where u, v are the frequency variables

e The inverse transform from of F(u,v) to f(x,y) is:

f(x,y)=["_[" F(u,v)e 127 x*W)qy gy

33



. . . 000
Discrete Fourier Analysis- 2D 4
e The forward Fourier Transform Is:

_ 1 MoAANA _j2z(ux/M +w /N)
F(U’V)_ MN XEO yZ::O f(X’ y)e ’

u=0,1,2,.,.M -1, v=0,1,2,..,N -1

e The corresponding inverse Transform is:
.I: (X, y) _ Mil NilF(u,V)e+j27Z'(UX/M +Vy/N) ’
u=0 v=0

x=0,1,2,..,M -1, y=0,1,2,..,N —1

e If images are sampled in a square array, then M=N, and
N-1 N-1 -
F(u,v):i ST f(x y)e—JZﬂ(ux+vy)/N |
N x=0 y=0

1 N-1 N-1 ]
f(x, y):W ZO ZO F(u,v)e+127z(ux+Vy)/N
u=0 v=

34



Properties of Fourier Transform -1 o

e Invertibility

e Separability

N-1 . N1 .
F(u,v):i y e J2AXIN 5T gy vy 1PN gy
N x=0 y=0
N—1 .
or F(u,v):i D F(x,v)e"zm‘x”\I
N x=0

N-1 :
with F(x,v):N[% Y f(x y)e 1ZW/N
y=0

This means that F(u,v) can be computed by successive
applications of 1D Fourier Transform of its inverse:

f(x,y) 2 F(x,v) = F(u,v)

35



Properties of Fourier Transform -2 4+

( X
e Rotation:

If we introduce:
X =rcos0,y=rsin0, then f(x,y) - f(r,0)
u=wcos®, v=wsin®d, thenF(u,v) 2> F(w,P)
Substitute into Fourier equation yields:
f(r, 6+6,) €= F(w, ® +0,)

In other words, rotating f(x,y) by an angle 6, is equivalent
to rotating F(u,v) by the same angle

e Scalability
For two scalars a and b:
a f(x,y) €= a F(u,v)
and f(ax, by) €=» F(u/a, v/b)/|ab| "



Properties of Fourier Transform -3 -

(X
e Convolution

e Itis an important operations in image processing application
e Convolution of two functions f(x) and g(x) is:

F(x)*g(x)=]", f(@) 9(x-a)da

where a is a dummy variable for integration.

e Convolution theory
e If f(x) has Fourier Transform F(u), and
g(x) has Fourier Transform G(u), then
f(x) * g(x) €= F(u) G(u)
l.e. convolution in x domain can be obtained by taking the inverse
Fourier Transform of the product F(u) G(u)
e An analogous result is:
f(x) g(x) &> F(u) * G(u)

e Many applications: image enhancement, etc.
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Block Transforms .

e Instead of operating on whole image/audio, divide it
Into blocks, and process each block separately.
Computational complexity decreases.
Transform captures the local behavior better.

e DCT (Discrete Cosine Transform) has been very
popular in block transform based image compression
for a long time.

It approximates Karhunen-Loeve (KLT), the optimum
transform in mean square error (MSE) sense

DCT is adopted for JPEG/MPEG standards
More about DCT transform in later part of lectures
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o000
- - - e
Multimedia Signals & Systems °ss
>
Network:
Input Devices: |g§$fn Input Devices:
Microphone, Camera, Tele h0|:1e Microphone, Camera,
Keyboard, Writing Wirrc)aless ’ Keyboard, Writing

Pad, Scanner, et Pad, Scanner, etc.
A-D

Media Network

Processor Interface Processor

Output Devices: Output Devices:
Loudspeaker, Multimedia VNI EGIEN  Loudspeaker,
Visual Display,  BpPNERSle BEIERS 0l Visual Display,
Printer, etc.

Printer, etc.

Multimedia Information: Text, Speech, Audio, Image, Video,
Cinema (From analog to digital representations and back)
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Summary

e Cover fundamentals of media processing (from
analog to digital domain)

e Discuss digital signals and systems
Fourier transform, Bock Transforms, ....

e Pave way for following classes
Image, video and audio processing
many other applications later
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Next Lesson

e Next Lesson
Image Transforms and Filters

e Cover Audio part in Lesson 8

41



MID-TERM TEST

1. BB R AR S R B ROR

2. KD-Tree, HashingZ& 4 HAH




