
Multimedia Indexing and Search

Architecture

1

References

• KD-Tree: http://en.wikipedia.org/wiki/K-d_tree.

• J. Sivic & A. Zisserman (2003). Video Google: A Text

Retrieval Approach to Object Matching in Videos. Int’l

Conference on Computer Vision.

• A. Andoni & P. Indky (2008). Near-optimal hashing

algorithms for approximate nearest neighbor in high

dimensions. Communications of ACM, 51(1).

• S. Brin & L. Page (1998). The anatomy of a large-

scale hypertextual web search engine. 19 pages

2

 Introduction to Image Indexing

 Tree-based Indexing

 Inverted File Indexing

 Hashing-based Indexing

 MM Indexing Strategy

 Google Search Architecture

 Summary

Contents

3

Introduction -1

User Search Engine Search ResultQuery Image

Database

 Pipeline of Content-based Image Retrieval

4

5

Query Image Image Database

Introduction -2

 Search for similar images (nearest neighbors) within

a database

…
…

Nearest

Neighbors

Search Results

Introduction -3

 How to find similar images?

 Naive approach: Linear Scan

Compute the similarities of query image to all the images in

the database based on visual features, and then find the

similar ones.

Image Database

Feature

Extraction
Visual feature space

Linear Scan of

Query Image Repn

6

 Key Limitation:

 Linear scan becomes very slow for large-scale database

(e.g., millions of images).

 Solution: Indexing!

Introduction -4

 Indexing

• Index database images into one/more index tables in advance

• Perform search over index tables

• Improve the speed of search

Image Database

Feature

Extraction

Visual features

Index Tables

Query Image

Feature

Extraction

Results

“If I had eight hours to chop down a tree,

I’d spend six sharpening my ax.”

Abraham Lincoln

7

 Introduction to Image Indexing

 Tree-based Indexing

 Inverted File Indexing

 Hashing-based Indexing

 MM Indexing Strategy

 Google Search Architecture

 Summary

Contents

8

Tree-based Indexing

 Split feature space using spatial partitions and

recursive hyperplane decomposition, resulting in a

tree structure

 Sort database samples in the leaf nodes

 One example is KD-Tree, K-Dimensional Tree, which

is widely used in early image systems, e.g. IBM QBIC

2-d features
9

KD-Tree -1

 A binary tree storing k-dimension database samples

in its leaf nodes

 Recursively partitions the samples into axis-aligned

cells, dividing the samples approximately in half by a

line perpendicular to one of the k coordinate axes

 Division strategies – How to Choose the next axis to

split?

• Cycle through the axes in order

• Or choose the axis that has the largest variance among the

database points

• Cycling through the axes in order is widely used in practice

10

KD-Tree -2

 KD Tree construction (Cycle through the axes in

order)

 As an example, we show the construction of kd tree

in 2-dimension

 Division strategy

• Split by x-coordinate: split by a vertical line that has

(ideally) half the points left or on, and half right.

• Split by y-coordinate: split by a horizontal line that has

(ideally) half the points below or on and half above.

• Typically choose the Medium point for splitting

11

x

Split by x-coordinate: split by a vertical line that has

approximately half the points left or on, and half

right.

KD-Tree –Example -1

12

KD-Tree –Example -2

x

y

Split by y-coordinate: split by a horizontal line that

has half the points below or on and half above.

y

13

x

y

x

Split by x-coordinate: split by a vertical line that

has half the points left or on, and half right.

y

xxx

KD-Tree –Example -3

14

x

y

x

y

Split by y-coordinate: split by a horizontal line that

has half the points below or on and half above.

y

xxx

y

KD-Tree –Example -4

15

KD-Tree -3

 After the construction, for each node, its left subtree

holds all the samples that are less than (or equal to)

the node along the splitting axis;

 its right subtree holds all the samples that are larger.

Two key decisions:

How to select roots of tree/sub-trees?

• Chose the point that splits the points in the middle, May use

Medium of the points

• This will lead to a balance tree

When to end splitting?

• If a node had no children, the splitting is not required.

16

 Examine nearby points first: Traverse the tree, looking for the

rectangle that contains the query.

Nearest Neighbors Search

with KD-Tree

Query

17

 Explore the branch of the tree that is closest to the query point first.

Nearest Neighbors Search

with KD-Tree

18

 Explore the branch of the tree that is closest to the query point first.

Nearest Neighbors Search

with KD-Tree

19

 When we reach a leaf, it saves that node point as the "current best”.

 It then computes the distance to each point in the node; and maintain

the kNN distance dn (the distance that covers the kNN points)

Nearest Neighbors Search

with KD-Tree

20

 The algorithm unwinds the tree by checking whether there could be

any points on the other splitting planes that are closer than the kNN

point.

 This can be done by intersecting the splitting hyperplane with

a hypersphere (of radius dn) around the search point

Nearest Neighbors Search

with KD-Tree

21

 If the hypersphere crosses the plane, there could be nearer points

on the other side of the plane;

 Otherwise, the algorithm continues walking up the tree, and the

entire branch on the other side of that node is eliminated.

Nearest Neighbors Search

with KD-Tree

22

 Each time a new closest node is found, we can update the distance

bound for kNN, dn

Nearest Neighbors Search

with KD-Tree

23

 Each time a new closest node is found, we can update the kNN

distance bound, dn

Nearest Neighbors Search

with KD-Tree

24

 Using the distance bounds and the bounds of the data below each

node, we can prune parts of the tree that could NOT include the

nearest neighbor.

Nearest Neighbors Search

with KD-Tree

25

 Using the distance bounds and the bounds of the data below each

node, we can prune parts of the tree that could NOT include the

nearest neighbor.

Nearest Neighbors Search

with KD-Tree

26

 Using the distance bounds and the bounds of the data below

each node, we can prune parts of the tree that could NOT

include the nearest neighbor.

Nearest Neighbors Search

with KD-Tree

27

KD-Tree -4

 KD-Tree is very effective for low-dimensional data

(i.e., fewer than 10 dimensions)

 It can be extended by providing the k nearest

neighbours to a point by maintaining k current

bests instead of just one.

 It may not be effective for high-dimensional data,

like visual features:

• Need to visit many more branches during the

backtracking stage

• Degrades to worst case linear san performance in

practice.

28

 Introduction to Image Indexing

 Tree-based Indexing

 Inverted File Indexing

 Hashing-based Indexing

 MM Indexing Strategy

 Google Search Architecture

 Summary

Contents

29

 Summarize the entire image based on its

distribution (histogram) of visual word occurrences.

Recall Bag-of-Visual Words

…..

fr
e
q
u
e
n
c
y

Visual words codebook

Visual Word Histogram

30

Indexing of Visual Words -1
 As the Bag-of-Visual-Words model quantizes the

feature space into discrete “visual words”, we can

index images easily with an inverted file

 Build an inverted index of all images based on

occurrences of visual word

• Database images are

loaded into the index

mapping words to

image numbers

31

Indexing of Visual Words -2

 Extract visual words in query image

 Map query image to the indices of database

images that share a word

32

Indexing of Visual Words -3

 Searching with inverted file

Input: A query image q represented by visual words,

suppose q has L visual words

Access To inverted file

Output: a set of images S have the same visual words as the query image

S = ∩i = 1, …, L { listi }, where listi is the corresponding index list of images

that contain i-th visual word.

33

Indexing of Visual Words -4

 Collect all words with

query region

 Inverted file index to find

relevant images (frames)

 Compare word counts

 Spatial verification

• Sivic & Zisserman, ICCV 2003

• Demo:

http://www.robots.ox.ac.uk/~vgg/

research/vgoogle/index.html

34

Indexing of Visual Words -5
Other examples of search results

Query Search results

35

Indexing of Visual Words -5

 Although it shows encouraging performance, a

fundamental difference between an image/video

query and a text query limits its usefulness

 An image query usually contain more than thousands of

visual words, while a text query is usually of 3-5 terms.

• This results in high computation cost and long query time

 Possible solutions:

• Remove visual stop words from the query

• Perform feature selection to select important visual words

36

 Introduction to Image Indexing

 Tree-based Indexing

 Inverted File Indexing

 Hashing-based Indexing

 MM Indexing Strategy

 Google Search Architecture

 Summary

Contents

37

 Basic Idea:

 Hash high-dimensional data into a low-dimensional

Hamming space based on a family of hash functions

 Hash similar samples into the same bucket based on a

family of hash functions

38

Hashing-based Indexing -1

Hamming space is the set of all 2L binary strings of length L

Hamming distance between two equal length binary strings

is the number for which the bits are different.

10010 …

10101 …

10111 …

… …………

Image Database

Hash Functions h(x)

Hash Table

39

Hashing-based Indexing -2

Hash Codes

Bucket

40

Hashing-based Indexing -3

 Search with Hashing:

 Given a query, only the samples in the same or adjacent

buckets needs to be exhaustively searched

 Much more efficient than scanning over the entire database

10010 …

10101 …

10111 …

… …………

Image Database

Hash Functions h(x)

Hash Table
Query

Image

Hash

Functions
10101

Hamming distance = 0

Hamming distance = 1

Hamming distance = 1

41

Hashing-based Indexing -4

 What is a good hash code?

 Compact: requires a small number of bits to code the full

dataset

 Effective: maps similar samples to similar binary code words

 Efficient: Easily computed for a new image

 Design hash functions for generating hash codes

 Consider a simple and popular hashing approach

 Locality Sensitive Hashing (LSH) – random projection

42

Locality Sensitive Hashing -1

 Hash high-dimensional data into hamming space

based on random projection

Image Database

Feature

Extraction

X1=[x11, x12, … ,x1d]
T

X2=[x21, x22, … ,x2d]
T

.

.

.

XN=[xN1, xN2, … ,xNd]
T

Recall that database images are represented by visual

feature vectors.

 LSH focuses on approximate nearest neighbor search

by hashing similar points together as much as possible

using Random Projection

 The basic idea of LSH is to project the data into a

low-dimensional binary (Hamming) space; that is,

each data point is mapped to a b-bit vector, called

the hash key

 Each hash function h must satisfy the locality

sensitive hashing property:

where ∈ [0, 1] is the similarity

function of interest

Locality Sensitive Hashing -2

43

Locality Sensitive Hashing -3

The hashing function of LSH to produce Hash Code

is a hyperplane separating the space

44

Locality Sensitive Hashing -4

 Take random projections of data

 Quantize each projection with few bits

0

1

0

1
0

1

110

No learning involved

Feature vector

45

46

 Indexing of samples

Input: A set of points P, M (number of hash tables)

Output: Hash Tables Ti, i = (1, …, M)

Foreach i = 1, …, M

Initialize hash table Ti by generating random hash functions gi

Foreach i = 1, …, M

Foreach j=1,…,Nsamples

stroe point pj on bucket gi(pj) of hash table Ti

Locality Sensitive Hashing -5

47

 The resulting Hash Tables after indexing

bucket [0..000]

bucket [0..001]

bucket [0..010]

bucket [0..011]

bucket [0..100]

Locality Sensitive Hashing -6

48

 Search: An approximate Nearest Neighbor Search

with LSH

Input: A query point q, K (number of approximate nearest neighbor)

Access To hash tables Ti, i = (1, …, M)

Output: K (or less) approximate nearest neighbors

S ← Φ

Foreach i = 1, …, M

if gi matches the gq of query sample q, then

S ← S U {points found in gi bucket of table Ti }

Return the K nearest neighbors of q found in set S

Locality Sensitive Hashing -7

49

 Limitations:

 Need long codes to achieve an acceptable accuracy

 Need many hash tables to get a good recall

 But the sizes of L and M are heuristic

Locality Sensitive Hashing -8

 May learn the appropriate hash codes based on

machine learning techniques  Spectral Hashing

(to read up yourself)

 Introduction to Image Indexing

 Tree-based Indexing

 Inverted File Indexing

 Hashing-based Indexing

 MM Indexing Strategy

 Google Search Architecture

 Summary

Contents

50

 What indexing structure should be used for which

content?

• KD-Tree: Traditionally used to index global dense

features, like color histograms, texture histogram etc

• Inverted Structure: Most obvious candidate is Bag-of-

Visual-Words Feature

• Hashing Index: For Global and any combined (fused)

features

51

 Multiple features may be indexed in different

indexing structures

MM Indexing Strategy

featuresmjDQSimDQSim
j

j

jj
m

j

ji i
,..1;1),,(),(  

 A similarity measure that combine multiple features:

Current Image Search Engines

Image

Search

Engines

Visual

+

Text

+

User-log

Visual

Text

+

User-log

52

Large Scale Image Indexing

Image

Indexing

One limitation:

The feature must be

sparse.

Visual feature

Inverted Index

Visual feature

Hash Code

Inverted Index

53

Framework of a Large-Scale

Media Search Engine

Re-ranking 54

Query Example: Text query (‘Car’)

(www.nextcenter.org/)

55

Query Example: Image query

56

 Introduction to Image Indexing

 Tree-based Indexing

 Inverted File Indexing

 Hashing-based Indexing

 MM Indexing Strategy

 Google Search Architecture

 Summary

Contents

57

58

Design & Architecture of Google

 Main indexing system: An inverted file and direct file

system

 Additional indexing features:
1. Link information – in the form of PageRank

2. Anchor Text - additional description of intra-content

3. Location information - better in handling pseudo phrases

4. Formatting info

 Features 1 and 2 are anti-Spamming device

 Features 1, 3, 4 are precision device

Link Feature: Page Rank

 One of the key features that contributes to the success

of Google search is the Page Rank

 Approach:

o It generates PageRank based on the entire web graph, rather

than just a subset (read up)

o PageRanks are "pre-computed", and hence provides a static, a

priori "importance" estimates for all the pages on the web

o At query time, these scores are used conjunction with query-

specific IR scores to rank query results

o A possible ranking score is:

W(q, Di) = α*wi(q, Di) + (1-α)*Page-Rank (Di)

More about this ranking score later 59

60

Anchor Text, Location &

Formatting Features

 Google associates anchor text with the page that the

link points to:

o Often provide more accurate description (what other people

thinks of this page) of web pages than the pages themselves

o Makes it harder for pages to appear to be something it is not

o Can be used to index pages that are hard to describe by text

 Location information: makes extensive use of proximity

in search

 Formatting features: words in larger or bolder fonts are

weighted higher than others .

Indexing Structures -1
Both forward and Inverted Indices

 Indexer: convert each doc into word occurrences

called hits, and stores them in:
o Forward-index “barrels”

o 2 Inverted-index “barrels”: 1) titles & anchors; 2) all the rest.

(search Index 1 first, if not enough hits, then search Index 2)

61

Indexing Structures -2
Hit Lists

 Word Hit Lists:

o Encodes list of occurrences of a particular word in a doc

including (position, font, cap …)

o Three lists of hits:

* Fancy Hit: hits in URL, title, anchor text, meta tag ..

(imp: font size, relative to normal, type: type of fancy text)

* Plain Hit: everything else

* Anchor Hit: store separately for efficiency reason

62

63

Overall Architecture

 Web pages are

fetched by several

distributed crawlers

 Storage Servers

compress & store

pages in repository

 Indexing..

64

Ranking of Results
 Google essentially performs keyword-based searches:

 Ranking for single word query
o Examines hit list of several different types: (title, anchor, URL, plain

large font, plain small font …)

o Generate the weight vector (VW) for each pre-defined hit type (VT)

o VT = (tfancy , tplain , tanchor) -- pre-defined

o VW = (wfacncy , wplain , wanchor)

o wi(q, Di) = VW . VT , for doci

o Final score W(q, Di) = α*wi(q, Di) + (1-α)*Page-Rank (Di)

• Ranking for multi word query:
o Consider each word in turn

o Need to consider proximity of hits when combining the contribute of

each word – classify proximity into 10 different value bins ranging

from phrase match to "not even close”

o HOW TO DO IT??

65

Query Evaluation

 Best effort search:
o Put a limit on response time, once a certain # of matched

documents (currently set at 40,000) are found, the results

will be presented to users

o It is possible that sub-optimal results will be obtained

 Search Performance
o Able to return results not covered by other search engines

– because of PageRank & Proximity

 Query processing timing is dominated by disk IO

over NFS

 Introduction to Image Indexing

 Tree-based Indexing

 Inverted File Indexing

 Hashing-based Indexing

 MM Indexing Strategy

 Google Search Architecture

 Summary

Contents

66

Discussions and Summary -1

 We have discussed various methods for indexing

media content.

• KD-Tree and LSH hashing for indexing “raw” feature vectors:

KD-Tree works well for low-dimensional data (e.g., less than

10-D). LSH is effective for high-dimensional data, like visual

features.

• Inverted file for indexing visual words, making it possible to

apply text search methodology for media search.

67

 While visual words show good invariant to
geometric and photometric changes and are
effective for object retrieval, global features (e.g.,
color, texture) are still useful and effective for
retrieving scene images.

 To support various types of user queries, it is
necessary to index images based on different
kinds of features using corresponding index
techniques, like hashing and inverted file.

Discussions and Summary -2

68

 From next lecture onwards, we will look into
fundamentals of multimedia

 Next Lesson: Fundamentals in Digital

Multimedia

 Following Lessons will look into MM

compression, Audio, JPEG and MPEG etc..

Next and Future Lessons

69

