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Introduction -1

e Pipeline of Content-based Image Retrieval

User

Query Image

Search Engine

Database

Search Result
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Introduction -2 Sees
o0
o
e Search for similar images (nearest neighbors) within
a database
E :\,_ Nearest
— Neighbors
Query Image Image Database
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Search Results



Introduction -3

e How to find similar images?
e Naive approach: Linear Scan

Compute the similarities of query image to all the images in
the database based on visual features, and then find the

similar ones.

Feature

Extraction

Image Database

e Key Limitation:

T

[
»

Visual feature space

Linear Scan of
Query Image Rep?

e Linear scan becomes very slow for large-scale database

(e.g., millions of images).

e Solution: Indexing!
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= |ndexing
* Index database images into one/more index tables in advance
« Perform search over index tables
* Improve the speed of search
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Tree-based Indexing 34

= Split feature space using spatial partitions and

recursive hyperplane decomposition, resulting in a
tree structure

= Sort database samples in the leaf nodes

= One example is KD-Tree, K-Dimensional Tree, which
IS widely used in early image systems, e.g. IBM QBIC

2-d features
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KD-Tree -1

= A binary tree storing k-dimension database samples
In its leaf nodes

= Recursively partitions the samples into axis-aligned

cells, dividing the samples approximately in half by a

line perpendicular to one of the k coordinate axes

= Division strategies — How to Choose the next axis to

split?
« Cycle through the axes in order

« Or choose the axis that has the largest variance among the

database points

« Cycling through the axes in order is widely used in practice

10



KD-Tree -2

= KD Tree construction (Cycle through the axes in
order)

= As an example, we show the construction of kd tree

In 2-dimension
= Division strategy

« Split by x-coordinate: split by a vertical line that has
(ideally) half the points left or on, and half right.

« Split by y-coordinate: split by a horizontal line that has

(ideally) half the points below or on and half above.
 Typically choose the Medium point for splitting

11



KD-Tree —Example -1 seee

Split by x-coordinate: split by a vertical line that has
approximately half the points left or on, and half
right.
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KD-Tree —Example -2 3

Split by y-coordinate: split by a horizontal line that
has half the points below or on and half above.
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KD-Tree —Example -3

Split by x-coordinate: split by a vertical line that
has half the points left or on, and half right.
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KD-Tree —Example -4

Split by y-coordinate: split by a horizontal line that
has half the points below or on and half above.
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KD-Tree -3 3

= After the construction, for each node, its left subtree
holds all the samples that are less than (or equal to)
the node along the splitting axis;

= |ts right subtree holds all the samples that are larger.

Two key decisions:

=How to select roots of tree/sub-trees?

» Chose the point that splits the points in the middle, May use
Medium of the points

* This will lead to a balance tree

*When to end splitting?
* If a node had no children, the splitting is not required.

16



Nearest Neighbors Search

with KD-Tree

= Examine nearby points first: Traverse the tree, looking for the

e Query

rectangle that contains the query.
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Nearest Neighbors Search

with KD-Tree
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= Explore the branch of the tree that is closest to the query point first.



Nearest Neighbors Search see

with KD-Tree 2
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= Explore the branch of the tree that is closest to the query point first.



Nearest Neighbors Search
with KD-Tree

/ O\
O O
<5/ \b o’/ \o
iR d/d/\b\b d/d/\b\b 3] d/\b\b

= When we reach a leaf, it saves that node point as the "current best”.
= |t then computes the distance to each point in the node; and maintain
the kNN distance d, (the distance that covers the kNN points)
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Nearest Neighbors Search
with KD-Tree 2
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= The algorithm unwinds the tree by checking whether there could be
any points on the other splitting planes that are closer than the kNN
point.

= This can be done by intersecting the splitting hyperplane with
a hypersphere (of radius d,) around the search point

21



Nearest Neighbors Search see

with KD-Tree 2
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If the hypersphere crosses the plane, there could be nearer points
on the other side of the plane;

Otherwise, the algorithm continues walking up the tree, and the
entire branch on the other side of that node is eliminated.
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Nearest Neighbors Search see

with KD-Tree
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= Each time a new closest node is found, we can update the distance
bound for kNN, d,



Nearest Neighbors Search see

with KD-Tree 2
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= Each time a new closest node is found, we can update the KNN
distance bound, d,



Nearest Neighbors Search
with KD-Tree 2
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= Using the distance bounds and the bounds of the data below each
node, we can prune parts of the tree that could NOT include the
nearest neighbor.
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Nearest Neighbors Search see

with KD-Tree 2
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= Using the distance bounds and the bounds of the data below each
node, we can prune parts of the tree that could NOT include the
nearest neighbor.
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Nearest Neighbors Search sett.

with KD-Tree 3T

= Using the distance bounds and the bounds of the data below
each node, we can prune parts of the tree that could NOT
include the nearest neighbor.
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KD-Tree -4 oo

= KD-Tree is very effective for low-dimensional data
(i.e., fewer than 10 dimensions)

* |t can be extended by providing the k nearest
neighbours to a point by maintaining k current
bests instead of just one.

= |t may not be effective for high-dimensional data,
like visual features:

* Need to visit many more branches during the
backtracking stage

« Degrades to worst case linear san performance in
practice.

28
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Recall Bag-of-Visual Words 335

= Summarize the entire image based on its
distribution (histogram) of visual word occurrences.

Visual Word Histogram

LDl

FPLONERLS B

Visual words codebook

frequency
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Indexing of Visual Words -1 3

= As the Bag-of-Visual-Words model quantizes the
feature space into discrete “visual words”, we can
Index images easily with an inverted file

—> Build an inverted index of all images based on
occurrences of visual word

\‘\‘ V‘V":‘.i w
71 | . S Image #1
.’l

- Database images are
loaded into the index
mapping words to

. I #2
image numbers e

Database images

Image #3
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Indexing of Visual Words -2 3

= Extract visual words in query image

= Map query image to the indices of database
Images that share a word




Indexing of Visual Words -3 3T

= Searching with inverted file

Input: A query image g represented by visual words,
suppose g has L visual words
Access To inverted file
Output: a set of images S have the same visual words as the query image

S=0N;-; {list}, where list;is the corresponding index list of images
that contain i-th visual word.

33



Indexing of Visual Words -4 3

= Collect all words with
guery region

= Inverted file index to find
relevant images (frames)

= Compare word counts
= Spatial verification

Query
region

e Sivic & Zisserman, ICCV 2003

 Demo:
http://www.robots.ox.ac.uk/~vgg/
research/vgoogle/index.html

Sollel] PaAaLlloy
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Indexing of Visual Words -5
Other examples of search results

windows Vista
DUMMIES

Understundlng

Timesaving Te echniques:

DUMMIES

Cisco Nln|ﬂ5 Windows Vista ""I'Sh HISWW

Search results

GIGABODND

DUM"HI[E 5
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Indexing of Visual Words -5 3

o0

= Although it shows encouraging performance, a
fundamental difference between an image/video
guery and a text query limits its usefulness

=> An image query usually contain more than thousands of
visual words, while a text query is usually of 3-5 terms.

« This results in high computation cost and long query time

= Possible solutions:
« Remove visual stop words from the query
« Perform feature selection to select important visual words

36
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Hashing-based Indexing -1 s

e Basic Idea:

Hash high-dimensional data into a low-dimensional
Hamming space based on a family of hash functions

Hash similar samples into the same bucket based on a
family of hash functions

Hamming space is the set of all 2-binary strings of length L

Hamming distance between two equal length binary strings
Is the number for which the bits are different.

1011101, 1001001 || g = 2
1110101,1111101|| 7 = 1

38



Hashing-based Indexing -2

\
|

(T ,
Bucket 1 (110101,

- - -

Hash Codes

: ~Hash Table
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Hashing-based Indexing -3 Sees

e Search with Hashing:

e Given a query, only the samples in the same or adjacent
buckets needs to be exhaustively searched

e Much more efficient than scanning over the entire database

Image Database

l Hash Functions h(x)

10010 ﬂ@ L Hamming distance = 1

Hash & . on o e e~ 7 Hamming distance = 0
—_> —> il
Functions 10101 :_];Q];O_l_ - H.-EE_ — - _"_': Hash Table
"™ Hamming distance = 1
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Hashing-based Indexing -4 3

e What is a good hash code?

e Compact: requires a small number of bits to code the full
dataset

e Effective: maps similar samples to similar binary code words
e Efficient: Easily computed for a new image

e Design hash functions for generating hash codes
e Consider a simple and popular hashing approach
e Locality Sensitive Hashing (LSH) — random projection

41



Locality Sensitive Hashing -1 seee

= Hash high-dimensional data into hamming space
based on random projection

Ceallre Xy=[X1s X195 oov Xqg]"
. Xo=[Xo1, Xops +vn 1 Xogl”
Extraction :
Image Database Xn=Xngs Xngs -+ Xnal "

Recall that database images are represented by visual
feature vectors.

LSH focuses on approximate nearest neighbor search
by hashing similar points together as much as possible
using Random Projection

42



Locality Sensitive Hashing -2 See

= The basic idea of LSH is to project the data into a
low-dimensional binary (Hamming) space; that is,
each data point is mapped to a b-bit vector, called
the hash key

= Each hash function h must satisfy the locality
sensitive hashing property:

Pr|h(zx;) = h(x;)] = sim(x;, ;)

where SIM(Z;, ;) & [0, 1] is the similarity
function of interest

43



Locality Sensitive Hashing -3

The hashing function of LSH to produce Hash Code

1, if ri'x >0
0, otherwise

r'x > 0 is ahyperplane separating the space
I'I
rlx

44



Locality Sensitive Hashing -4 ees

= Take random projections of data rlx

= (Quantize each projection with few bits

G
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€————— Feature vector

No learning involved
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Locality Sensitive Hashing -5 oo

e Indexing of samples

Input: A set of points P, M (number of hash tables)
Output: Hash Tables T;, i = (1, ..., M)
Foreachi=1, ..., M
Initialize hash table T, by generating random hash functions g;
Foreachi=1, ..., M
Foreach |=1,...,Ngmples

stroe point p; on bucket g;(p;) of hash table T,

46
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Locality Sensitive Hashing -6 Sees
o0
o
e The resulting Hash Tables after indexing
bucket [0..000] — —|
bucket [0..001] — — ) A
bucket [0..010] — — 1
— |
bucket [0..011]
m [ doto
bucket [0..100] S L > ./,—| | ﬁwrzext poinfer

47



Locality Sensitive Hashing -7 oo

e Search: An approximate Nearest Neighbor Search
with LSH

Input: A query point g, K (number of approximate nearest neighbor)
Access To hash tables T, i= (1, ..., M)
Output: K (or less) approximate nearest neighbors
S— @
Foreachi=1,..., M
if g, matches the g, of query sample g, then
S «— S U {points found in g; bucket of table T;}

Return the K nearest neighbors of g found in set S

48



Locality Sensitive Hashing -s seee

e Limitations:
e Need long codes to achieve an acceptable accuracy
e Need many hash tables to get a good recall
e But the sizes of L and M are heuristic

e May learn the appropriate hash codes based on
machine learning technigues - Spectral Hashing
(to read up yourself)

49



Contents

Introduction to

mage Indexing

Tree-based Ino

exing

Inverted File Indexing

Hashing-based

ndexing

MM Indexing Strategy

Google Search

Summary

Architecture

50



MM Indexing Strategy +-

= Multiple features may be indexed in different
Indexing structures

= What indexing structure should be used for which
content?

« KD-Tree: Traditionally used to index global dense
features, like color histograms, texture histogram etc

* Inverted Structure: Most obvious candidate is Bag-of-
Visual-Words Feature

« Hashing Index: For Global and any combined (fused)
features

= A similarity measure that combine multiple features:

Sim(Q,D;)=>«,;Sim(Q’,D’), > &, =1, j=1,..m features
j o j

51



Current Image Search Engines | s2:¢
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Visual
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Text Search
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Large Scale Image Indexing 4

r

\_

\
Visual feature

J

Inverted Index

J
v

r

L

The feature must be

One limitation:

sparse.

~\

J

Image

Indexing

Visual feature

2 |
Hash Code

4

Inverted Index
\_ /
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Framework of a Large-Scale sese.

. . X X X J
Media Search Engine 434
o0
SIFT Feature Extraction
Sipa-rse cod1ing ermulaﬁon in the 1{1]11‘1}1 f: (% — W V|2 + A, |

Hash Code Generation
:> 1. it Multidimensional Rectangle

Hash Code Extension

4

For the given image, the words are generated by
the hash code and the code with a Hamming
distance of 1 or 2. The number of words for
cach image is 1+ Cj, + C3, .

4

oj1(1(0(0(1 (1171|1111

t

1
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Query Example: Text query (‘Car’) | ss::

(www.nextcenter.org/) °

Car i

Statistics About 7,549 results (0.79 seconds)

Crawled § Indexed

12,818,227 2,024,782

97,670,193 | 28,763,776

78,957,657 5,147,031

76,204,512 2,571,918

S
=

207,158 31,984
®) 779,584 0

1611928 135528
=3 2,257,383 11,000
i 254,816 0

Total | 271,052,959 § 38,696,017

Feites g8

Y

wings

v [2|[a]|[alls]|[e|[7][e][o][10][nNext>|



Query Example: Image query | ::

Statistics About 2,755 results (12.895 seconds)

Crawled Indexed

12,818,227 2,024,782

97,670,193 28,764,743

78,957,657 5,147,031

76,304,512 2,571,918

297,158 31,984

@ @88

779,584 0

1,611,928 135,526

3 2,257,883 11,000
i 254,316 0

Total 271,052,959 38695984
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Design & Architecture of Google | ::

= Main indexing system: An inverted file and direct file
system

= Additional indexing features:
1. Link information — in the form of PageRank
2. Anchor Text - additional description of intra-content
3. Location information - better in handling pseudo phrases
4. Formatting info

» Features 1 and 2 are anti-Spamming device
= Features 1, 3, 4 are precision device

58



Link Feature: Page Rank :

= One of the key features that contributes to the success
of Google search is the Page Rank

= Approach:

0 It generates PageRank based on the entire web graph, rather
than just a subset (read up)

0 PageRanks are "pre-computed”, and hence provides a static, a
priori "Iimportance" estimates for all the pages on the web

0 At query time, these scores are used conjunction with query-
specific IR scores to rank query results

0 A possible ranking score is:

W(a, D)) = a*w(q, D)) + (1-a)*Page-Rank (D)

More about this ranking score later 59



Anchor Text, Location & o
Formatting Features

= Google associates anchor text with the page that the
link points to:

o Often provide more accurate description (what other people
thinks of this page) of web pages than the pages themselves

0 Makes it harder for pages to appear to be something it is not
o0 Can be used to index pages that are hard to describe by text

= Location information: makes extensive use of proximity
In search

= Formatting features: words in larger or bolder fonts are
weighted higher than others .

60



o Forward-index “barrels”

0 2 Inverted-index “barrels™. 1) titles & anchors; 2) all the rest.
(search Index 1 first, if not enough hits, then search Index 2)

Indexing Structures -1

Both forward and Inverted Indices

Indexer: convert each doc into word occurrences
called hits, and stores them In:

Eorward Barrels: total 43 GB

docid

wordid: 24

hhits: 8

hit hit hit hit

wordid: 24

hhits: 8

hit hit hit hit

hull wordid

docid

wordid: 24

hhits: 8

hit hit hit hit

wordid: 24

hhits: 8

hit hit hit hit

wordid: 24

hhits: 8

hit hit hit hit

hull wordid

Lexicon: 293MB

Inverted Barrels: 41 GB

' wordid] ndocs] | docid: 27] nhits:5[ hit hit hit hit
: wordid| nhdocs| - docid: 27| nhits:5 hit hit hit
“wordid] ndocs| <] ™{ docid: 27 nhits:5[_hit hit hit hit
""""" nhits:5] hit hit

\ docid: 27

61



Indexing Structures -2

Hit Lists
Hit: 2 bytes
plain:|cap:1 [ Imp:3 position: 12
fancy:|cap:1 | Imp =7 |type: 4 position: 8
anchor:|cap:1 [ imp =7 [type: 4 [hash:4 |pos: 4

= \Word Hit Lists:

0 Encodes list of occurrences of a particular word in a doc

including (position, font, cap ...)
o0 Three lists of hits:

* Fancy Hit: hits in URL, title, anchor text, meta tag ..
(imp: font size, relative to normal, type: type of fancy text)

* Plain Hit: everything else
* Anchor Hit: store separately for efficiency reason

62



Overall Architecture oo

Web pages are
fetched by several
distributed crawlers

Storage Servers
compress & store
pages in repository
Indexing..

63



Ranking of Results Ses

= Google essentially performs keyword-based searches:

= Ranking for single word query

0 Examines hit list of several different types: (title, anchor, URL, plain
large font, plain small font ...)

Generate the weight vector (V,,) for each pre-defined hit type (V)
MT = (tfancy 1 tplain J tanchor) o pre-defined

MW = (Wfacncy J Wplain J Wanchor)

wi(g, D) =V . V; , fordoc

Final score W(q, D,) = a*w,(q, D)) + (1-a)*Page-Rank (D)

©O O O O O

« Ranking for multi word query:

o Consider each word in turn

0 Need to consider proximity of hits when combining the contribute of
each word — classify proximity into 10 different value bins ranging
from phrase match to "not even close”

o HOW TO DO IT?? o4



Query Evaluation

= Best effort search:

o Put a limit on response time, once a certain # of matched
documents (currently set at 40,000) are found, the results
will be presented to users

o It is possible that sub-optimal results will be obtained

= Search Performance

0 Able to return results not covered by other search engines
— because of PageRank & Proximity

= Query processing timing is dominated by disk 10
over NFS

65
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Discussions and Summary -1 o

= We have discussed various methods for indexing

media content.

« KD-Tree and LSH hashing for indexing “raw” feature vectors:
KD-Tree works well for low-dimensional data (e.g., less than
10-D). LSH is effective for high-dimensional data, like visual

features.
 Inverted file for indexing visual words, making it possible to
apply text search methodology for media search.

67



Discussions and Summary -2 34+

= While visual words show good invariant to
geometric and photometric changes and are
effective for object retrieval, global features (e.g.,
color, texture) are still useful and effective for
retrieving scene images.

= To support various types of user queries, it is
necessary to index images based on different
kinds of features using corresponding index
techniqgues, like hashing and inverted file. .



Next and Future Lessons

= From next lecture onwards, we will look into
fundamentals of multimedia

= Next Lesson: Fundamentals in Digital
Multimedia

* Following Lessons will look into MM
compression, Audio, JPEG and MPEG etc..
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